Abstract

OCT instruments permit fast and non-invasive 3D optical biopsies of biological tissues. However, they are bulky and expensive, making them only affordable at the hospital and thus, not sufficiently used as an early diagnostic tool. Significant reduction of system cost and size is achieved by implementation of MOEMS technologies. We propose an active array of 4x4 Mirau microinterferometers where the reference micro-mirrors are carried by a vertical comb-drive microactuator, enabling the implementation of the phase-shifting technique that improves the sensitivity and eliminates unwanted interferometric terms. We focus on the design of the imaging system, the microfabrication and the assembly of the Mirau microinterferometer, and the swept-source OCT imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems

Maciej Baranski, Sylwester Bargiel, Nicolas Passilly, Christophe Gorecki, Chenping Jia, Jörg Frömel, and Maik Wiemer
Appl. Opt. 54(22) 6924-6934 (2015)

Swept-source optical coherence tomography microsystem with an integrated Mirau interferometer and electrothermal micro-scanner

P. Struk, S. Bargiel, Q. A. A. Tanguy, F. E. Garcia Ramirez, N. Passilly, P. Lutz, O. Gaiffe, H. Xie, and C. Gorecki
Opt. Lett. 43(19) 4847-4850 (2018)

Dense arrays of millimeter-sized glass lenses fabricated at wafer-level

Jorge Albero, Stéphane Perrin, Sylwester Bargiel, Nicolas Passilly, Maciej Baranski, Ludovic Gauthier-Manuel, Florent Bernard, Justine Lullin, Luc Froehly, Johann Krauter, Wolfgang Osten, and Christophe Gorecki
Opt. Express 23(9) 11702-11712 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
    [Crossref]
  2. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003).
    [Crossref] [PubMed]
  3. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
    [Crossref] [PubMed]
  4. L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
    [Crossref]
  5. A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
    [Crossref]
  6. O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
    [Crossref]
  7. M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).
  8. J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
    [Crossref]
  9. J. Sun and H. Xie, “MEMS-Based Endoscopic Optical Coherence Tomography,” Hindawi International Journal of Optics 2011, 825629 (2011).
  10. A. Dubois, Handbook of Full-field Optical Coherence Microscopy: Technology and Applications (Pan Stanford Publishing Pte. Ltd., Singapore, 2016).
  11. P. J. de Groot and J. F. Biegen, “Interference microscope objectives for wide-field areal surface topography measurements,” Opt. Eng. 55(7), 074110 (2016).
    [Crossref]
  12. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [Crossref] [PubMed]
  13. J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
    [Crossref]
  14. J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
    [Crossref] [PubMed]
  15. J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
    [Crossref]
  16. J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
    [Crossref] [PubMed]
  17. J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
    [Crossref] [PubMed]
  18. W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
    [Crossref]
  19. S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
    [Crossref] [PubMed]
  20. S. Perrin, “Development and characterization of an optical coherence tomography micro-system. Application to dermatology“, PhD thesis, June 2016, Université de Franche-Comté, Besançon, France.
  21. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [Crossref] [PubMed]
  22. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
    [Crossref] [PubMed]
  23. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
    [Crossref] [PubMed]
  24. K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
    [Crossref]
  25. P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
    [Crossref]

2016 (3)

P. J. de Groot and J. F. Biegen, “Interference microscope objectives for wide-field areal surface topography measurements,” Opt. Eng. 55(7), 074110 (2016).
[Crossref]

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

2015 (5)

2012 (2)

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

2011 (1)

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

2009 (1)

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

2008 (1)

O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
[Crossref]

2007 (3)

2005 (2)

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

2003 (4)

Aguirre, A. D.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Akujärvi, A.

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

Albero, J.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Antila, J.

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

Bajraszewski, T.

Baranski, M.

Bargiel, S.

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Beer, S.

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Bernard, F.

Biegen, J. F.

P. J. de Groot and J. F. Biegen, “Interference microscope objectives for wide-field areal surface topography measurements,” Opt. Eng. 55(7), 074110 (2016).
[Crossref]

Blomberg, M.

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

Boettcher, T.

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

Bu, P.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[Crossref]

Campbell, E. W.

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

Chen, Y.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Chen, Z.

Contag, C. H.

Dannberg, P.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

de Groot, P. J.

P. J. de Groot and J. F. Biegen, “Interference microscope objectives for wide-field areal surface topography measurements,” Opt. Eng. 55(7), 074110 (2016).
[Crossref]

Degertekin, F. L.

O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
[Crossref]

Enderlein, T.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Fan, L.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Fercher, A. F.

Froehly, L.

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
[Crossref] [PubMed]

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

Froemel, J.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Fujimoto, J. G.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Gastinger, K.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Gauthier-Manuel, L.

Gessner, T.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Gorecki, C.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Gronle, M.

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

Haugholt, K. H.

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Hertz, P. R.

Herz, P. R.

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Hitzenberger, C. K.

Ishimaru, I.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Izatt, J. A.

Jozwik, M.

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Karhade, O. G.

O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
[Crossref]

Kino, G. S.

Körner, K.

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

Krauter, J.

Krulevitch, P.

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

Kujawinska, M.

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Kurfess, T. R.

O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
[Crossref]

Lardet-Vieudrin, F.

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

Lee, A. P.

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

Leitgeb, R. A.

Lemoal, P.

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

Lullin, J.

Mandella, M. J.

McConaghy, C. F.

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

Nelson, J. S.

Oda, K.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Oohira, F.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Osten, W.

Passilly, N.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Perrin, S.

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

S. Perrin, M. Baranski, L. Froehly, J. Albero, N. Passilly, and C. Gorecki, “Simple method based on intensity measurements for characterization of aberrations from micro-optical components,” Appl. Opt. 54(31), 9060–9064 (2015).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, S. Bargiel, N. Passilly, M. Baranski, L. Gauthier-Manuel, F. Bernard, J. Lullin, L. Froehly, J. Krauter, W. Osten, and C. Gorecki, “Dense arrays of millimeter-sized glass lenses fabricated at wafer-level,” Opt. Express 23(9), 11702–11712 (2015).
[Crossref] [PubMed]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

Piyawattanametha, W.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Rissanen, A.

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

Rousselot, C.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Saari, H.

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

Sasaki, O.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[Crossref]

Schaeffel, C.

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Shimokawa, F.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Sommargren, G.

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

Stumpf, M.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Suzuki, T.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Takao, H.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Tao, Y. K.

Terao, K.

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Wang, T. D.

Wang, W.-S.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Wang, X.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[Crossref]

Wiemer, M.

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Wu, M. C.

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and En Face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref] [PubMed]

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

Zeitner, U. D.

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

Zhang, J.

Zhao, M.

Appl. Opt. (1)

J. Micro/Nanolith. MEMS MOEMS (1)

A. Rissanen, A. Akujärvi, J. Antila, M. Blomberg, and H. Saari, “MOEMS miniature spectrometers using tuneable Fabry-Perot interferometers,” J. Micro/Nanolith. MEMS MOEMS 11(2), 023003 (2012).
[Crossref]

J. Microelectromech. Syst. (1)

A. P. Lee, C. F. McConaghy, G. Sommargren, P. Krulevitch, and E. W. Campbell, “Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry,” J. Microelectromech. Syst. 12(6), 960–971 (2003).
[Crossref]

J. Micromech. Microeng. (3)

O. G. Karhade, F. L. Degertekin, and T. R. Kurfess, “SOI-based micro scanning grating interferometers: device characterization, control and demonstration of parallel operation,” J. Micromech. Microeng. 18(4), 045007 (2008).
[Crossref]

J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, and C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21(6), 065005 (2011).
[Crossref]

J. Lullin, S. Bargiel, P. Lemoal, S. Perrin, J. Albero, N. Passilly, L. Froehly, F. Lardet-Vieudrin, and C. Gorecki, “An electrostatic vertical microscanner for phase modulating array-type Mirau microinterferometry,” J. Micromech. Microeng. 25(11), 115013 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007).
[Crossref]

Opt. Eng. (1)

P. J. de Groot and J. F. Biegen, “Interference microscope objectives for wide-field areal surface topography measurements,” Opt. Eng. 55(7), 074110 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett. 28(6), 414–416 (2003).
[Crossref] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref] [PubMed]

J. Lullin, S. Perrin, M. Baranski, S. Bargiel, L. Froehly, N. Passilly, J. Albero, and C. Gorecki, “Impact of mirror spider legs on imaging quality in Mirau micro-interferometry,” Opt. Lett. 40(10), 2209–2212 (2015).
[Crossref] [PubMed]

J. Albero, S. Perrin, N. Passilly, J. Krauter, L. Gauthier-Manuel, L. Froehly, J. Lullin, S. Bargiel, W. Osten, and C. Gorecki, “Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances,” Opt. Lett. 41(1), 96–99 (2016).
[Crossref] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[Crossref] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett. 32(20), 2918–2920 (2007).
[Crossref] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
[Crossref] [PubMed]

Photonics Lett. Pol. (1)

M. Kujawinska, K. Gastinger, M. Jozwik, K. H. Haugholt, C. Schaeffel, and S. Beer, “An interferometric test station for massive parallel inspection of MEMS and MOEMS,” Photonics Lett. Pol. 1(2), 58–60 (2009).

Proc. SPIE (3)

L. Fan, W. Piyawattanametha, M. C. Wu, A. D. Aguirre, P. R. Herz, Y. Chen, and J. G. Fujimoto, “High-resolution 3D OCT imaging with a MEMS scanning endoscope,” Proc. SPIE 5719, 140–143 (2005).
[Crossref]

J. Krauter, T. Boettcher, K. Körner, M. Gronle, W. Osten, N. Passilly, L. Froehly, S. Perrin, and C. Gorecki, “Performance analysis of a full-field and full-range swept-source OCT system,” Proc. SPIE 9576, 957609 (2015).
[Crossref]

W.-S. Wang, M. Wiemer, J. Froemel, T. Enderlein, T. Gessner, J. Lullin, S. Bargiel, N. Passilly, J. Albero, and C. Gorecki, “Vertical integration of array-type miniature interferometers at wafer level by using multi-stack anodic bonding,” Proc. SPIE 9890, 989011 (2016).
[Crossref]

Sens. Actuators A Phys. (1)

K. Oda, H. Takao, K. Terao, T. Suzuki, F. Shimokawa, I. Ishimaru, and F. Oohira, “Vertical comb-drive MEMS mirror with sensing function for phase-shift device,” Sens. Actuators A Phys. 181, 61–69 (2012).
[Crossref]

Other (3)

S. Perrin, “Development and characterization of an optical coherence tomography micro-system. Application to dermatology“, PhD thesis, June 2016, Université de Franche-Comté, Besançon, France.

J. Sun and H. Xie, “MEMS-Based Endoscopic Optical Coherence Tomography,” Hindawi International Journal of Optics 2011, 825629 (2011).

A. Dubois, Handbook of Full-field Optical Coherence Microscopy: Technology and Applications (Pan Stanford Publishing Pte. Ltd., Singapore, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Design layout of the SS-OCT microsystem: (a) SS-OCT setup; (b) schematic cross-sectional view of 4x4 array of active Mirau micro interferometers; and (c) a focus on 3D view of electrostatic vertical microscanner with an array of suspended reference micro-mirrors and a zoom on the honeycomb structure.
Fig. 2
Fig. 2 Wafer-level process of array-type plano-convex glass microlenses.
Fig. 3
Fig. 3 Flow-chart of Z microscanner and a view of the micro-mirror platform.
Fig. 4
Fig. 4 Illustration of process flow steps for the Z microscanner: (a) first DRIE etch (step d): structuration of comb-drive fingers; (b) removal of Mask 2 and second DRIE (step e): view of comb-drive fingers; (c) wafer of released Z microscanners (step g); and (d) deposition of contact pads (step h).
Fig. 5
Fig. 5 Assembly results: (a) bonding interfaces and electrical connection strategy, b) anodically bonded Mirau wafer stack.
Fig. 6
Fig. 6 View of a PCB-mounted chip of Mirau interferometers, shown from the microlens side.
Fig. 7
Fig. 7 Opto-mechanical characterization: (a) measured IPSF with an YZ slice along the optical axis and XY slice at the focal plane; and (b) micro-mirror displacement under a sinusoidal excitation obtained at resonance frequency.
Fig. 8
Fig. 8 SS-OCT A-scan plots obtained: (a) in absence of phase-shift; (b) with a 2-frame phase-shift algorithm; and (c) with a 4-frame phase-shift algorithm.
Fig. 9
Fig. 9 SS-OCT images: a) 2D cross-sectional image from the multi-layer scotch tape; (b) 2D cross-sectional image from 4-mm long sample made of scratched paint covered with varnish; and (c) 3D image of onion slices.