Abstract

Line-field confocal optical coherence tomography (LC-OCT) operating in two distinct spectral bands centered at 770 nm and 1250 nm is reported, using a single supercontinuum light source and two different line-scan cameras. B-scans are acquired simultaneously in the two bands at 4 frames per second. Greyscale representation and color fusion of the images are performed to either produce a single image with both high resolution (1.3 µm × 1.2 µm, lateral × axial, measured at the surface) in the superficial part of the image and deep penetration, or to highlight the spectroscopic properties of the sample. In vivo images of fair and dark skin are presented with a penetration depth of ∼700 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Line-field confocal time-domain optical coherence tomography with dynamic focusing

Arnaud Dubois, Olivier Levecq, Hicham Azimani, Arthur Davis, Jonas Ogien, David Siret, and Anaïs Barut
Opt. Express 26(26) 33534-33542 (2018)

Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging

Peter Cimalla, Julia Walther, Mirko Mehner, Maximiliano Cuevas, and Edmund Koch
Opt. Express 17(22) 19486-19500 (2009)

Simultaneous dual-band ultra-high resolution full-field optical coherence tomography

Delphine Sacchet, Julien Moreau, Patrick Georges, and Arnaud Dubois
Opt. Express 16(24) 19434-19446 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  3. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., 2013).
  4. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
    [Crossref] [PubMed]
  5. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [Crossref]
  6. A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
    [Crossref] [PubMed]
  7. A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
    [Crossref]
  8. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  9. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [Crossref] [PubMed]
  10. Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
    [Crossref] [PubMed]
  11. A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
    [Crossref]
  12. J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
    [Crossref] [PubMed]
  13. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  14. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
    [Crossref] [PubMed]
  15. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
    [Crossref] [PubMed]
  16. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
    [Crossref] [PubMed]
  17. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
    [Crossref] [PubMed]
  18. A. Federici and A. Dubois, “Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera,” Opt. Lett. 39(6), 1374–1377 (2014).
    [Crossref] [PubMed]
  19. A. Dubois, “Focus defect and dispersion mismatch in full-field optical coherence microscopy,” Appl. Opt. 56(9), D142–D150 (2017).
    [Crossref] [PubMed]
  20. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13(4), 832–843 (1996).
    [Crossref]
  21. G. Gianto, F. Salzenstein, and P. Montgomery, “Comparison of envelope detection techniques in coherence scanning interferometry,” Appl. Opt. 55(24), 6763–6774 (2016).
    [Crossref] [PubMed]
  22. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
    [Crossref] [PubMed]
  23. C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
    [Crossref] [PubMed]
  24. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  25. M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
    [Crossref] [PubMed]
  26. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
    [Crossref] [PubMed]
  27. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
    [Crossref] [PubMed]
  28. M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Wavelet denoising of multiframe optical coherence tomography data,” Biomed. Opt. Express 3(3), 572–589 (2012).
    [Crossref] [PubMed]
  29. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [Crossref] [PubMed]
  30. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  31. X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

2018 (2)

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

2017 (3)

A. Dubois, “Focus defect and dispersion mismatch in full-field optical coherence microscopy,” Appl. Opt. 56(9), D142–D150 (2017).
[Crossref] [PubMed]

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref] [PubMed]

X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

2016 (2)

2014 (1)

2012 (1)

2010 (2)

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
[Crossref] [PubMed]

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

2007 (4)

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
[Crossref] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
[Crossref] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2006 (3)

2000 (1)

1999 (2)

1996 (1)

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

1994 (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1973 (1)

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Aguirre, A. D.

Alex, A.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Anderson, R. R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Azimani, H.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

Bargo, P.

Barut, A.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

Beckmann L, L.

X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

Bezerra, H. G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Binder, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Birks, T.

Boas, D. A.

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Bornemann, J.

Borsdorf, A.

Bouma, B. E.

Breuer, E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
[Crossref] [PubMed]

Cimalla, P.

Cinotti, E.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Costa, M. A.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Cuevas, M.

Davis, A.

Del Marmol, V.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

Drexler, W.

Dubois, A.

Durkin, A.

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Faber, D. J.

Federici, A.

Fischl, B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Först, M.

Fujimoto, J. G.

Georges, P.

Gianto, G.

Glittenberg, C.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Grychtol, P.

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Hale, G. M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermes, B.

Hofer, B.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, S.-W.

Huber, R.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Humbert, G.

Iftimia, N.

Ippen, E. P.

Kalkman, J.

Kärtner, F. X.

Knight, J.

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

Koch, E.

Kodach, V. M.

Kollias, N.

Kopf, D.

Kray, S.

Kurz, H.

Larkin, K. G.

Lederer, M.

Leon-Saval, S.

Levecq, O.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

Levine, A.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref] [PubMed]

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Magnain, C.

Malvehy, J.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

Mardin, C. Y.

Markowitz, O.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Mayer, M. A.

Mehner, M.

Meredith, P.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Montgomery, P.

Moreau, J.

Morgner, U.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Ogien, J.

Oh, W. Y.

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Perrot, J. L.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

Pitris, C.

Popov, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Povazay, B.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

Powell, B. J.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Querry, M. R.

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Rollins, A. M.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Sacchet, D.

Sakadžic, S.

Salzenstein, F.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shu X, X.

X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Siret, D.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

Spöler, F.

St J Russell, P.

Stifter, D.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suppa, M.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Tornow, R. P.

Tran, M. L.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Tseng, S. H.

van Leeuwen, T. G.

Wadsworth, W.

Wagner, M.

Walther, J.

Wang, H.

Wang, K.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref] [PubMed]

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Wiesauer, K.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

Yelin, R.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zhang, H.

X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Biophys. J. (1)

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Dermatol. Clin. (1)

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for in situ diagnosis of skin tumors,” J. Biomed. Opt. 23, 106007 (2018).
[Crossref]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt. 15(2), 026025 (2010).
[Crossref] [PubMed]

X. Shu X, L. Beckmann L, and H. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 1–14 (2017).

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

JACC Cardiovasc. Interv. (1)

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: A Comprehensive Review clinical and research applications,” JACC Cardiovasc. Interv. 2(11), 1035–1046 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[Crossref]

Opt. Express (7)

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[Crossref] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express 15(17), 10832–10841 (2007).
[Crossref] [PubMed]

D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008).
[Crossref] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
[Crossref] [PubMed]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (Slack Inc., 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the dual-band LC-OCT device. PCF: Photonic-crystal fiber; RC: reflective collimator; DM: long-pass (950 nm) dichroic mirror; F: long-pass filter; M: mirror; L1: adjustable focal length optical system; CL: cylindrical lens; BS: cube beam splitter; MO: microscope objective; PZT: piezo-electric linear stage; L2, L3: tube lenses.
Fig. 2
Fig. 2 Measured spectra of the Vis/nIR (solid blue line) and nIR bands (solid red line), derived by Fourier transform of the interference patterns shown in Fig. 3. The emission spectrum of the supercontinuum laser source (dashed black line) presents a high peak at 1064 nm.
Fig. 3
Fig. 3 Interference patterns measured from a glass/air interface in the VIS/nIR band (a) and the nIR band (b).
Fig. 4
Fig. 4 Simultaneous in vivo B-scans of skin on the back of the hand in the Vis/nIR band centered at 770 nm (a) and in the nIR band centered at 1250 nm (b). (c) is the compounded image from (a) and (b). (d) is the color image where (a) is assigned to the green channel and (b) to the red channel. (e) and (f) are magnified images from (a) and (b) respectively, corresponding to the region in the dashed frame drawn in (c). Scale bar: 200 µm.
Fig. 5
Fig. 5 Images of dark skin (phototype VI). The Vis/nIR band (a) is strongly absorbed by the melanin whereas the IR band (b) penetrates into the dermis. The compounded image (c) can display a high resolution in the epidermis and penetration in the dermis at the same time. The color image (d) clearly differentiates the epidermis from the dermis. Scale bar: 200 µm.
Fig. 6
Fig. 6 Intensity depth profiles from images presented in Fig. 4 and Fig. 5(a,b) compare the depth penetrations in dark skin and fair skin for the Vis/nIR band and the nIR band respectively. The position of the DEJ (dermal-epidermal junction) is easily detectable because of the peaks due to the presence of melanin in dark skin (black arrow) and the hollows in fair skin (red arrow) occurring at a depth of approximately 100 µm. The profile for dark skin in (a) drops sharply after the DEJ reducing effectively the depth penetration compared to fair skin. In (b), if a drop is noticeable after the DEJ, the depth penetration is similar to fair skin nonetheless. The scale for the intensity is the same as the one used to display the images.

Tables (1)

Tables Icon

Table 1 Specifications in the two imaging bands

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = 0 λS( λ )dλ / 0 S( λ )dλ .
Δλ=2 2ln( 2 ) σ λ 2 ,
σ λ 2 = 0 ( λ λ 0 ) 2 S( λ )dλ / 0 S( λ )dλ .

Metrics