Abstract

This paper investigates the rhythm strip and parameters of synchronization of human induced pluripotent stem cell (iPS) derived cardiomyocytes. The synchronization is evaluated from quantitative phase images of beating cardiomyocytes which are obtained using the time-lapse digital holographic imaging method. By quantitatively monitoring the dry mass redistribution, digital holography provides the physical contraction-relaxation signal caused by autonomous cardiac action potential. In order to analyze the synchronicity at the cell-to-cell level, we extracted single cardiac muscle cells, which contain the nuclei, from the phase images of cardiomyocytes containing multiple cells resulting from the fusion of k-means clustering and watershed segmentation algorithms. We demonstrate that mature cardiomyocyte cell synchronization can be automatically evaluated by time-lapse microscopic holographic imaging. Our proposed method can be applied for studies on cardiomyocyte disorders and drug safety testing systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy

Benjamin Rappaz, Inkyu Moon, Faliu Yi, Bahram Javidi, Pierre Marquet, and Gerardo Turcatti
Opt. Express 23(10) 13333-13347 (2015)

Optophysiology of cardiomyocytes: characterizing cellular motion with quantitative phase imaging

Christine Cordeiro, Oscar J. Abilez, Georges Goetz, Tushar Gupta, Yan Zhuge, Olav Solgaard, and Daniel Palanker
Biomed. Opt. Express 8(10) 4652-4662 (2017)

Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes

Rupsa Datta, Christopher Heylman, Steven C. George, and Enrico Gratton
Biomed. Opt. Express 7(5) 1690-1701 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
    [Crossref] [PubMed]
  2. J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
    [Crossref] [PubMed]
  3. A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
    [Crossref] [PubMed]
  4. K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
    [Crossref] [PubMed]
  5. H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
    [Crossref] [PubMed]
  6. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  7. T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
    [Crossref] [PubMed]
  8. Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
    [Crossref] [PubMed]
  9. M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
    [Crossref] [PubMed]
  10. E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
    [Crossref] [PubMed]
  11. B. N. Kholodenko, “Cell-signalling dynamics in time and space,” Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006).
    [Crossref] [PubMed]
  12. C. P. Wheeler-Jones, “Cell signalling in the cardiovascular system: an overview,” Heart 91(10), 1366–1374 (2005).
    [Crossref] [PubMed]
  13. I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
    [Crossref]
  14. R. L. DeHaan and R. Hirakow, “Synchronizatin of pulsation rates in isolated cardiac myocytes,” Exp. Cell Res. 70(1), 214–220 (1972).
    [Crossref] [PubMed]
  15. O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
    [Crossref] [PubMed]
  16. C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
    [Crossref] [PubMed]
  17. A. Manukyan, L. Abraham, H. Dungrawala, and B. Schneider, “Synchronization of yeast,” Methods Mol. Biol. 761, 173–200 (2011).
    [Crossref]
  18. G. Banfalvi, “Overview of cell synchronization,” Methods Mol. Biol. 761, 1–23 (2011).
    [Crossref]
  19. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [Crossref] [PubMed]
  20. A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
    [Crossref]
  21. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
    [Crossref] [PubMed]
  22. K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
    [Crossref] [PubMed]
  23. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
    [Crossref] [PubMed]
  24. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
    [Crossref] [PubMed]
  25. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [Crossref] [PubMed]
  26. K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
    [Crossref] [PubMed]
  27. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  28. I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
    [Crossref] [PubMed]
  29. U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  30. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  31. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  32. R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
    [Crossref] [PubMed]

2018 (2)

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
[Crossref] [PubMed]

2017 (1)

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

2016 (3)

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

2015 (4)

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

2014 (1)

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

2013 (4)

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

2012 (2)

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (1)

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

2008 (1)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

2007 (1)

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

2006 (2)

B. N. Kholodenko, “Cell-signalling dynamics in time and space,” Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006).
[Crossref] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

2005 (2)

2002 (2)

1999 (1)

1972 (1)

R. L. DeHaan and R. Hirakow, “Synchronizatin of pulsation rates in isolated cardiac myocytes,” Exp. Cell Res. 70(1), 214–220 (1972).
[Crossref] [PubMed]

1952 (1)

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Aalto-Setälä, K.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Abassi, Y. A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Acimovic, I.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Ahmadzadeh, E.

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

Anand, A.

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

Ando, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Anson, B.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Bai, M. Y.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Baohan, A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Bardyn, M.

Barer, R.

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Bohlen, H.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Bursac, N.

Burton, D. R.

Callamaras, N.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Carapezza, E.

Chang, Y.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Chapman, H.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Chen, T. W.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Chen, Y. W.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Chung, M. F.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Cohen, S.

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Conklin, B. R.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Crittenden, C.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Cromwell, E. F.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Cuche, E.

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

DeHaan, R. L.

R. L. DeHaan and R. Hirakow, “Synchronizatin of pulsation rates in isolated cardiac myocytes,” Exp. Cell Res. 70(1), 214–220 (1972).
[Crossref] [PubMed]

Depeursinge, C.

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Drori, S.

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Dvorak, P.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Ehlich, A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Elvassore, N.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Feaster, T. K.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Ferraro, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Funes, C.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Furukawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Gdeisat, M. A.

Grespan, E.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Hayakawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Herráez, M. A.

Hesley, J.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Hirakow, R.

R. L. DeHaan and R. Hirakow, “Synchronizatin of pulsation rates in isolated cardiac myocytes,” Exp. Cell Res. 70(1), 214–220 (1972).
[Crossref] [PubMed]

Hong, C. C.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Hsiao, C. W.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Hwang, H. S.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Hyttinen, J.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Ichisaka, T.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Jaferzadeh, K.

K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
[Crossref] [PubMed]

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

Javidi, B.

K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
[Crossref] [PubMed]

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

Jayaraman, V.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Jelinkova, S.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Jueptner, W.

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Kamp, T. J.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Kanda, Y.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kerkelä, E.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Kerr, R. A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kettenhofen, R.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Kholodenko, B. N.

B. N. Kholodenko, “Cell-signalling dynamics in time and space,” Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006).
[Crossref] [PubMed]

Kim, D. S.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Knollmann, B. C.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Kobayashi, S.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Koivisto, A. P.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Kolossov, E.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Kontula, K.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Koonce, C. H.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Kryshtal, D. O.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Kujala, V. J.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Kunihiro, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kurokawa, J.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Lacampagne, A.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Lahti, A. L.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Lahtinen, A. M.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

Lalor, M. J.

Le Houerou, V.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Lee, T. Y.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Lewis, Y.

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Li, N.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Li, R. K.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Liao, Z. X.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Looger, L. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Maiti, B.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Marquet, P.

Martewicz, S.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Matsui, E.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Meli, A. C.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Moon, I.

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
[Crossref] [PubMed]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

Narita, M.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Nitsan, I.

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Ohnuki, M.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Orger, M. B.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Ouyang, W.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Paavola, J.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

Palecek, S. P.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Pekkanen-Mattila, M.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Penttinen, K.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

Pesl, M.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Pribyl, J.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Prudent, M.

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Pulver, S. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Rappaz, B.

Renninger, S. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Rotrekl, V.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Rühe, J.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Rusyn, I.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Salykin, A.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Sánchez-Freire, V.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Satterwhite, L. L.

Schnars, U.

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Schreiter, E. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Seiler, A.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Serena, E.

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Shaked, N. T.

Silvennoinen, O.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Sirenko, O.

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

Skladal, P.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Soerens, A. G.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Sun, Y.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Sung, H. W.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Svoboda, K.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Swan, H.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Takahashi, K.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Tanabe, K.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Thomson, J. A.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Tissot, J. D.

Tomoda, K.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Turcatti, G.

Tzlil, S.

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Vanninen, S.

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

Vilotic, A.

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Wang, X.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Wardill, T. J.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Watzele, M.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Wax, A.

Wheeler-Jones, C. P.

C. P. Wheeler-Jones, “Cell signalling in the cardiovascular system: an overview,” Heart 91(10), 1366–1374 (2005).
[Crossref] [PubMed]

Wilson, G. F.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Wu, C. T.

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Wu, J. C.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Xi, B.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Xu, X.

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Yada, H.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Yamanaka, S.

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Yeom, S.

Yi, F.

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Yu, J.

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Zhang, J.

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomaterials (1)

C. W. Hsiao, M. Y. Bai, Y. Chang, M. F. Chung, T. Y. Lee, C. T. Wu, B. Maiti, Z. X. Liao, R. K. Li, and H. W. Sung, “Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating,” Biomaterials 34(4), 1063–1072 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biosens. Bioelectron. (1)

M. Pesl, J. Pribyl, I. Acimovic, A. Vilotic, S. Jelinkova, A. Salykin, A. Lacampagne, P. Dvorak, A. C. Meli, P. Skladal, and V. Rotrekl, “Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing,” Biosens. Bioelectron. 85, 751–757 (2016).
[Crossref] [PubMed]

Br. J. Pharmacol. (1)

Y. A. Abassi, B. Xi, N. Li, W. Ouyang, A. Seiler, M. Watzele, R. Kettenhofen, H. Bohlen, A. Ehlich, E. Kolossov, X. Wang, and X. Xu, “Dynamic monitoring of beating periodicity of stem cell-derived cardiomyocytes as a predictive tool for preclinical safety assessment,” Br. J. Pharmacol. 165(5), 1424–1441 (2012).
[Crossref] [PubMed]

Cell (1)

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131(5), 861–872 (2007).
[Crossref] [PubMed]

Circ. Res. (1)

J. Zhang, G. F. Wilson, A. G. Soerens, C. H. Koonce, J. Yu, S. P. Palecek, J. A. Thomson, and T. J. Kamp, “Functional cardiomyocytes derived from human induced pluripotent stem cells,” Circ. Res. 104(4), e30–e41 (2009).
[Crossref] [PubMed]

Dis. Model. Mech. (1)

A. L. Lahti, V. J. Kujala, H. Chapman, A. P. Koivisto, M. Pekkanen-Mattila, E. Kerkelä, J. Hyttinen, K. Kontula, H. Swan, B. R. Conklin, S. Yamanaka, O. Silvennoinen, and K. Aalto-Setälä, “Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture,” Dis. Model. Mech. 5(2), 220–230 (2012).
[Crossref] [PubMed]

Exp. Cell Res. (1)

R. L. DeHaan and R. Hirakow, “Synchronizatin of pulsation rates in isolated cardiac myocytes,” Exp. Cell Res. 70(1), 214–220 (1972).
[Crossref] [PubMed]

Heart (1)

C. P. Wheeler-Jones, “Cell signalling in the cardiovascular system: an overview,” Heart 91(10), 1366–1374 (2005).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

J. Biomol. Screen. (1)

O. Sirenko, C. Crittenden, N. Callamaras, J. Hesley, Y. W. Chen, C. Funes, I. Rusyn, B. Anson, and E. F. Cromwell, “Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using iPSC cells,” J. Biomol. Screen. 18(1), 39–53 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

I. Moon, K. Jaferzadeh, E. Ahmadzadeh, and B. Javidi, “Automated quantitative analysis of multiple cardiomyocytes at the single-cell level with three-dimensional holographic imaging informatics,” J. Biophotonics 11(12), e201800116 (2018).
[Crossref] [PubMed]

J. Mol. Cell. Cardiol. (2)

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

H. S. Hwang, D. O. Kryshtal, T. K. Feaster, V. Sánchez-Freire, J. Zhang, T. J. Kamp, C. C. Hong, J. C. Wu, and B. C. Knollmann, “Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
[Crossref] [PubMed]

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Langmuir (1)

E. Grespan, S. Martewicz, E. Serena, V. Le Houerou, J. Rühe, and N. Elvassore, “Analysis of calcium transients and uniaxial contraction force in single human embryonic stem cell-derived cardiomyocytes on micro structured elastic substrate with spatially controlled surface chemistries,” Langmuir 32(46), 12190–12201 (2016).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Nat. Phys. (1)

I. Nitsan, S. Drori, Y. Lewis, S. Cohen, and S. Tzlil, “Mechanical communication in cardiac cell synchronized beating,” Nat. Phys. 12(5), 472–477 (2016).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

B. N. Kholodenko, “Cell-signalling dynamics in time and space,” Nat. Rev. Mol. Cell Biol. 7(3), 165–176 (2006).
[Crossref] [PubMed]

Nature (2)

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Opt. Express (2)

PLoS One (1)

K. Penttinen, H. Swan, S. Vanninen, J. Paavola, A. M. Lahtinen, K. Kontula, and K. Aalto-Setälä, “Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models,” PLoS One 10(5), e0125366 (2015).
[Crossref] [PubMed]

Proc. IEEE (1)

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

Other (2)

A. Manukyan, L. Abraham, H. Dungrawala, and B. Schneider, “Synchronization of yeast,” Methods Mol. Biol. 761, 173–200 (2011).
[Crossref]

G. Banfalvi, “Overview of cell synchronization,” Methods Mol. Biol. 761, 1–23 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) shows the scheme of off-axis hologram recording, (b) shows a recorded hologram; inset is the magnified section of the area shown by arrow (yellow line is 500µm), and (c) is the quantitative phase image (yellow line is 20µm).
Fig. 2
Fig. 2 (a) Original phase image of cardiac muscle cells obtained by off-axis digital holographic imaging, (b) Cardiomyocyte image showing cell regions, internal and external markers which are obtained by using the marker-controlled watershed algorithm and k-means clustering method, (c) Final segmented cardiomyocyte image (some cells are labeled for the further discussion). Color bar is the same for (a) and (c).
Fig. 3
Fig. 3 (a) Detailed information about contraction and relaxation point of an isolated cardiac cell, (b) detected positive peaks for contraction and relaxation points of beating profile of the cardiac cell.
Fig. 4
Fig. 4 (a-b) Contraction and relaxation points for cell numbers 7 and 8, and (c) comparison of rhythm strips to detect and visualize synchronization.
Fig. 5
Fig. 5 (a-b) Detected contraction and relaxations points for cell numbers 3 and 4, and (c) comparison of rhythm strips to detect and visualize synchronization.
Fig. 6
Fig. 6 Rhythm strip comparison: 3D representation of rhythm strips synchronization detection.
Fig. 7
Fig. 7 Cross-correlation between cells 1-2, 1-3, and 7-8.

Tables (3)

Tables Icon

Table 1 Dynamic parameters used to detect synchronized beating cells and their corresponding description

Tables Icon

Table 2 Evaluated parameters and corresponding values for cell numbers 7 and 8

Tables Icon

Table 3 Measured parameters of a pair of isolated cardiac cells to detect isolated cell-cell synchronization (cells 3 and 4)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I H = | R | 2 + | O | 2 + R O+ O R,
I H F =IFFT{ FFT( I H )×Filter }= R * O,
Ψ( m,n )=Φ(m,n)exp[ iπ λd ( m 2 Δ ξ 2 +nΔ η 2 ) ]× FFT { R D ( k,l ) I H F ( k,l) )×exp[ iπ λd ( k 2 Δ x 2 + l 2 Δ y 2 ) ] } m,n ,
Φ(m,n)=exp[ iπ λD ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ],
Δξ=Δη= λd NΔx ,
ϕ(x,y)= tan 1 { Im[Ψ(m,n)] Re[Ψ(m,n)] },
OPD(x,y)= λ×ϕ(x,y) 2π ,
δ i opd =std[ op d i op d i+1 ],
(fg)[ n ] = def m= f * [ m ]g[ m+n ],
T delay = argmax m ((fg)(m)).

Metrics