Abstract

Phantoms simulating polarization characteristics of soft tissue play an important role in the development, calibration, and validation of diagnostic polarized imaging devices and of therapeutic strategy, in both laboratory and clinical settings. We propose to fabricate optical phantoms that simulate polarization characteristics of dense fibrous tissues by bonding electrospun polylactic acid (PLA) fibers between polydimethylsiloxane (PDMS) substrate with a groove. Increasing the rotational speed of an electrospinning collector helps improve the orientation of the electrospun fibers. The phantoms simulate the polarization characteristics of dense fibrous tissue of collagenous fibroma and healthy skin with high fidelity. Our experiments demonstrate the technical potential of using such phantoms for validation and calibration of polarimetric medical devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures

Bin Yang, John Lesicko, Manu Sharma, Michael Hill, Michael S. Sacks, and James W. Tunnell
Biomed. Opt. Express 6(4) 1520-1533 (2015)

Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT)

Nate J. Kemp, Haitham N. Zaatari, Jesung Park, H. Grady Rylander III, and Thomas E. Milner
Opt. Express 13(12) 4507-4518 (2005)

Polarization microscopy for characterizing fiber orientation of ocular tissues

Ning-Jiun Jan, Jonathan L. Grimm, Huong Tran, Kira L. Lathrop, Gadi Wollstein, Richard A. Bilonick, Hiroshi Ishikawa, Larry Kagemann, Joel S. Schuman, and Ian A. Sigal
Biomed. Opt. Express 6(12) 4705-4718 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
    [Crossref] [PubMed]
  2. L. Weil, Crash Course: Quick Reference Guide to Medicine and Surgery-E-Book (Elsevier Health Sciences, 2014).
  3. C. D. Fletcher, Diagnostic Histopathology of Tumors: 2-Volume Set with CD-ROMs (Elsevier Health Sciences, 2007).
  4. R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Expert Rev. Med. Devices 4(1), 83–95 (2007).
    [Crossref] [PubMed]
  5. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [Crossref] [PubMed]
  6. R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
    [Crossref] [PubMed]
  7. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
    [Crossref] [PubMed]
  8. S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
    [Crossref] [PubMed]
  9. D. Wang, Y. Chen, and J. T. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express 3(12), 3153–3160 (2012).
    [Crossref] [PubMed]
  10. R. X. Xu, D. W. Allen, J. Huang, S. Gnyawali, J. Melvin, H. Elgharably, G. Gordillo, K. Huang, V. Bergdall, M. Litorja, J. P. Rice, J. Hwang, and C. K. Sen, “Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds,” Biomed. Opt. Express 3(6), 1433–1445 (2012).
    [Crossref] [PubMed]
  11. S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
    [Crossref] [PubMed]
  12. O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
    [Crossref] [PubMed]
  13. B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45(18), 4464–4479 (2006).
    [Crossref] [PubMed]
  14. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  15. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
    [Crossref] [PubMed]
  16. J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
    [Crossref] [PubMed]
  17. B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
    [Crossref]
  18. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
    [Crossref] [PubMed]
  19. R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
    [Crossref]
  20. M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
    [Crossref] [PubMed]
  21. M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
    [Crossref] [PubMed]
  22. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
    [Crossref]
  23. S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.) 45(12), 4217–4225 (2004).
    [Crossref]
  24. Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
    [Crossref]
  25. G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
    [Crossref]
  26. I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
    [Crossref] [PubMed]
  27. W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
    [Crossref] [PubMed]
  28. Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
    [Crossref]
  29. X. Ou and M. Cakmak, “Influence of biaxial stretching mode on the crystalline texture in polylactic acid films,” Polymer (Guildf.) 49(24), 5344–5352 (2008).
    [Crossref]
  30. R. Y. Gu, K. L. Lurie, M. Pipes, and A. K. Ellerbee, “Variable-sized bar targets for characterizing three-dimensional resolution in OCT,” Biomed. Opt. Express 3(9), 2317–2325 (2012).
    [Crossref] [PubMed]
  31. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost. 35(2-3), 151–160 (1995).
    [Crossref]
  32. H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
    [Crossref]
  33. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
    [Crossref]
  34. H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
    [Crossref]
  35. H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., B, Polym. Phys. 40(18), 2119–2129 (2002).
    [Crossref]
  36. M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
    [Crossref]
  37. W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
    [Crossref] [PubMed]
  38. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  39. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
    [Crossref] [PubMed]
  40. E. Collett, Field Guide to Polarization (SPIE Press, 2005).
  41. Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
    [Crossref] [PubMed]
  42. R. Oldenbourg, “Polarized light microscopy of spindles,” Methods Cell Biol. 61, 175–208 (1999).
    [Crossref] [PubMed]
  43. Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
    [Crossref] [PubMed]
  44. G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
    [Crossref] [PubMed]
  45. G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
    [Crossref]
  46. T. Ushiki, “Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint,” Arch. Histol. Cytol. 65(2), 109–126 (2002).
    [Crossref] [PubMed]

2018 (2)

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

2017 (2)

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

2016 (4)

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

2015 (1)

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

2014 (1)

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (5)

2010 (2)

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

2009 (1)

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

2008 (3)

T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
[Crossref] [PubMed]

X. Ou and M. Cakmak, “Influence of biaxial stretching mode on the crystalline texture in polylactic acid films,” Polymer (Guildf.) 49(24), 5344–5352 (2008).
[Crossref]

2007 (2)

R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Expert Rev. Med. Devices 4(1), 83–95 (2007).
[Crossref] [PubMed]

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

2006 (4)

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45(18), 4464–4479 (2006).
[Crossref] [PubMed]

2004 (4)

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
[Crossref] [PubMed]

S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.) 45(12), 4217–4225 (2004).
[Crossref]

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

2003 (1)

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

2002 (6)

H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., B, Polym. Phys. 40(18), 2119–2129 (2002).
[Crossref]

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

T. Ushiki, “Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint,” Arch. Histol. Cytol. 65(2), 109–126 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

1999 (2)

R. Oldenbourg, “Polarized light microscopy of spindles,” Methods Cell Biol. 61, 175–208 (1999).
[Crossref] [PubMed]

H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
[Crossref]

1995 (1)

J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost. 35(2-3), 151–160 (1995).
[Crossref]

Adler, B.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Allen, A.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Allen, D. W.

Arras, M. M. L.

M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
[Crossref] [PubMed]

Baumann, B.

Baumann, S. O.

Bergdall, V.

Bergmeister, H.

M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
[Crossref] [PubMed]

Besner, G.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Boaz, K.

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

Bouma, B. E.

Brandner, J. M.

E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
[Crossref] [PubMed]

Brezinski, M. E.

Cakmak, M.

X. Ou and M. Cakmak, “Influence of biaxial stretching mode on the crystalline texture in polylactic acid films,” Polymer (Guildf.) 49(24), 5344–5352 (2008).
[Crossref]

Chan, C.

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

Chang, C.-C.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Chase, D. B.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Chen, Y.

D. Wang, Y. Chen, and J. T. Liu, “A liquid optical phantom with tissue-like heterogeneities for confocal microscopy,” Biomed. Opt. Express 3(12), 3153–3160 (2012).
[Crossref] [PubMed]

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

Chilek, M.

Chu, B.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Chu, J.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Chun, I.

H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
[Crossref]

Claborn, K.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
[Crossref] [PubMed]

Cromeens, B.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Cui, X.

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

Darling, C. L.

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

de Boer, J. F.

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

Demakis, C.

Demir, M. M.

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

Dong, E.

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

Doshi, J.

J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost. 35(2-3), 151–160 (1995).
[Crossref]

Dwivedi, P.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Elgharably, H.

Ellerbee, A. K.

Erman, B.

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

Failla, G.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Fang, D.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Fann, W.-S.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Farris, R. J.

S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.) 45(12), 4217–4225 (2004).
[Crossref]

Fei, Y.

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

Fennessey, S. F.

S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.) 45(12), 4217–4225 (2004).
[Crossref]

Fong, H.

H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
[Crossref]

Fried, D.

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

Gao, W.

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

Gardner, K.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Giattina, S.

Givens, S.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Gnyawali, S.

Gopal, R.

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

Gordillo, G.

Goth, W.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Götzinger, E.

Grasl, C.

M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
[Crossref] [PubMed]

Gu, R. Y.

Harman, M.

He, X.

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Hitzenberger, C. K.

Hong, J.

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

Hsiao, B. S.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Hsieh, Y. L.

H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., B, Polym. Phys. 40(18), 2119–2129 (2002).
[Crossref]

Hu, C.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Hu, L.

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

Hu, Z.

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Huang, J.

Huang, K.

Huang, Z.-M.

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Hubbard Cristinacce, P. L.

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

Hwang, J.

Jacques, S. L.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Jensen, J. M.

E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
[Crossref] [PubMed]

Jia, Q.

Kahr, B.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
[Crossref] [PubMed]

Kakade, M. V.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Kaminsky, W.

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
[Crossref] [PubMed]

Kaur, S.

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

Kim, K.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Konegger, T.

Kotaki, M.

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Kp, S. N

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

Kulkarni, R. R.

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

Lee, K.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Lee, K. H.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Lemaillet, P.

Leo, D.

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

Lesicko, J.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Lewis, A. J.

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

Li, J.

Li, L.

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

Li, Y.

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Lin, J.

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

Litorja, M.

Litschauer, M.

Liu, B.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45(18), 4464–4479 (2006).
[Crossref] [PubMed]

Liu, G.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

Liu, H.

H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., B, Polym. Phys. 40(18), 2119–2129 (2002).
[Crossref]

Liu, J. T.

Liu, S.

Liu, W.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

Lurie, K. L.

Ma, Z.

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

Manesh, S. K.

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

Mathew, G.

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

Matsuura, T.

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

McGhee, J.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Melvin, J.

Milner, T. E.

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

Mourtada, F.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Nadkarni, S. K.

Nah, C.

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

Natarajan, T.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Oh, W.-Y.

Oldenbourg, R.

R. Oldenbourg, “Polarized light microscopy of spindles,” Methods Cell Biol. 61, 175–208 (1999).
[Crossref] [PubMed]

Ou, X.

X. Ou and M. Cakmak, “Influence of biaxial stretching mode on the crystalline texture in polylactic acid films,” Polymer (Guildf.) 49(24), 5344–5352 (2008).
[Crossref]

Pan, H.

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

Parker, G. J. M.

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

Peng, M.

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Pipes, M.

Pircher, M.

Povoski, S. P.

R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Expert Rev. Med. Devices 4(1), 83–95 (2007).
[Crossref] [PubMed]

Prahl, S. A.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

Proksch, E.

E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
[Crossref] [PubMed]

Qiu, J.

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Rabolt, J. F.

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

Raby, S.

Ramakrishna, S.

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Ramella-Roman, J. C.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

Ran, S.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Ren, W.

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

Reneker, D.

H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
[Crossref]

Reneker, D. H.

J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost. 35(2-3), 151–160 (1995).
[Crossref]

Rhee, J.

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

Rice, J. P.

Sacks, M. S.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Salehpour, M. R.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Sarvade, S. D.

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

Sattmann, H.

Schima, H.

M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
[Crossref] [PubMed]

Schlanitz, F.

Schmidt-Erfurth, U.

Schneider, J. E.

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

Schütze, C.

Sen, C. K.

Shen, S.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Si, T.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Sill, T. J.

T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Stamper, D. L.

Subramanian, V.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Sundaray, B.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Teh, I.

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

Tunnell, J. W.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Ushiki, T.

T. Ushiki, “Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint,” Arch. Histol. Cytol. 65(2), 109–126 (2002).
[Crossref] [PubMed]

Vakoc, B. J.

Vassiliev, O. N.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Villiger, M.

von Recum, H. A.

T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Wang, D.

Wang, H.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

Wareing, T. A.

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Wu, Q.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

Xia, Y.

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

Xiang, R.-Z.

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Xie, J.

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

Xu, R.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Xu, R. X.

G. Liu, K. Huang, Q. Jia, S. Liu, S. Shen, J. Li, E. Dong, P. Lemaillet, D. W. Allen, and R. X. Xu, “Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology,” Appl. Opt. 57(23), 6772–6780 (2018).
[Crossref] [PubMed]

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

R. X. Xu, D. W. Allen, J. Huang, S. Gnyawali, J. Melvin, H. Elgharably, G. Gordillo, K. Huang, V. Bergdall, M. Litorja, J. P. Rice, J. Hwang, and C. K. Sen, “Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds,” Biomed. Opt. Express 3(6), 1433–1445 (2012).
[Crossref] [PubMed]

R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Expert Rev. Med. Devices 4(1), 83–95 (2007).
[Crossref] [PubMed]

Xue, J.

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

Xue, Y.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Yang, B.

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Yang, Z.

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Yilgor, E.

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

Yilgor, I.

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

Yu, Z.

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

Yuan, L.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Zhang, E. Z.

Zhang, H.

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

Zhang, S.

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

Zhang, Y.-Z.

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Zhao, G.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Zhao, Z.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Zhou, F. L.

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

Zhou, X.

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Zhu, Z.

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Zong, X.

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

Acc. Chem. Res. (1)

J. Xue, J. Xie, W. Liu, and Y. Xia, “Electrospun nanofibers: new concepts, materials, and applications,” Acc. Chem. Res. 50(8), 1976–1987 (2017).
[Crossref] [PubMed]

ACS Biomater. Sci. Eng. (1)

G. Liu, Q. Wu, P. Dwivedi, C. Hu, Z. Zhu, S. Shen, J. Chu, G. Zhao, T. Si, and R. Xu, “Hemoglobin-Laden Microcapsules for Simulating Oxygen Dynamics of Biological Tissue,” ACS Biomater. Sci. Eng. 4(9), 3177–3184 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. Sundaray, V. Subramanian, T. Natarajan, R.-Z. Xiang, C.-C. Chang, and W.-S. Fann, “Electrospinning of continuous aligned polymer fibers,” Appl. Phys. Lett. 84(7), 1222–1224 (2004).
[Crossref]

Arch. Histol. Cytol. (1)

T. Ushiki, “Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint,” Arch. Histol. Cytol. 65(2), 109–126 (2002).
[Crossref] [PubMed]

Biomaterials (1)

T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials 29(13), 1989–2006 (2008).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Chem. Soc. Rev. (1)

W. Kaminsky, K. Claborn, and B. Kahr, “Polarimetric imaging of crystals,” Chem. Soc. Rev. 33(8), 514–525 (2004).
[Crossref] [PubMed]

Compos. Sci. Technol. (1)

Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003).
[Crossref]

Exp. Dermatol. (1)

E. Proksch, J. M. Brandner, and J. M. Jensen, “The skin: an indispensable barrier,” Exp. Dermatol. 17(12), 1063–1072 (2008).
[Crossref] [PubMed]

Expert Rev. Med. Devices (1)

R. X. Xu and S. P. Povoski, “Diffuse optical imaging and spectroscopy for cancer,” Expert Rev. Med. Devices 4(1), 83–95 (2007).
[Crossref] [PubMed]

Fibers Polym. (1)

Y. Chen, J. Lin, Y. Fei, H. Wang, and W. Gao, “Preparation and characterization of electrospinning PLA/curcumin composite membranes,” Fibers Polym. 11(8), 1128–1131 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, and J. F. Rabolt, “Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers,” J. Am. Chem. Soc. 129(10), 2777–2782 (2007).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, “Preparation and anisotropic mechanical behavior of highly‐oriented electrospun poly (butylene terephthalate) fibers,” J. Appl. Polym. Sci. 101(3), 2017–2021 (2006).
[Crossref]

J. Biomed. Opt. (5)

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[Crossref] [PubMed]

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9(6), 1305–1310 (2004).
[Crossref] [PubMed]

S. K. Manesh, C. L. Darling, and D. Fried, “Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin,” J. Biomed. Opt. 14(4), 044002 (2009).
[Crossref] [PubMed]

Q. Wu, W. Ren, Z. Yu, E. Dong, S. Zhang, and R. X. Xu, “Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly,” J. Biomed. Opt. 20(12), 121308 (2015).
[Crossref] [PubMed]

J. Clin. Diagn. Res. (1)

R. R. Kulkarni, S. D. Sarvade, K. Boaz, S. N Kp, and A. J. Lewis, “Polarizing and light microscopic analysis of mineralized components and stromal elements in fibrous ossifying lesions,” J. Clin. Diagn. Res. 8(6), ZC42–ZC45 (2014).
[Crossref] [PubMed]

J. Electrost. (1)

J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrost. 35(2-3), 151–160 (1995).
[Crossref]

J. Magn. Reson. Imaging (1)

I. Teh, F. L. Zhou, P. L. Hubbard Cristinacce, G. J. M. Parker, and J. E. Schneider, “Biomimetic phantom for cardiac diffusion MRI,” J. Magn. Reson. Imaging 43(3), 594–600 (2016).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Ma, Z. Hu, H. Zhang, M. Peng, X. He, Y. Li, Z. Yang, and J. Qiu, “Flexible and transparent optically anisotropic films based on oriented assembly of nanofibers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(5), 1029–1038 (2016).
[Crossref]

J. Membr. Sci. (1)

R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, “Electrospun nanofibrous filtration membrane,” J. Membr. Sci. 281(1-2), 581–586 (2006).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

H. Liu and Y. L. Hsieh, “Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate,” J. Polym. Sci., B, Polym. Phys. 40(18), 2119–2129 (2002).
[Crossref]

Methods Cell Biol. (1)

R. Oldenbourg, “Polarized light microscopy of spindles,” Methods Cell Biol. 61, 175–208 (1999).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Hu, Z. Ma, M. Peng, X. He, H. Zhang, Y. Li, and J. Qiu, “Composite film polarizer based on the oriented assembly of electrospun nanofibers,” Nanotechnology 27(13), 135301 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

O. N. Vassiliev, T. A. Wareing, J. McGhee, G. Failla, M. R. Salehpour, and F. Mourtada, “Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams,” Phys. Med. Biol. 55(3), 581–598 (2010).
[Crossref] [PubMed]

Polymer (Guildf.) (6)

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, “Electrospinning of polyurethane fibers,” Polymer (Guildf.) 43(11), 3303–3309 (2002).
[Crossref]

H. Fong, I. Chun, and D. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer (Guildf.) 40(16), 4585–4592 (1999).
[Crossref]

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer (Guildf.) 43(16), 4403–4412 (2002).
[Crossref]

S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.) 45(12), 4217–4225 (2004).
[Crossref]

H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method,” Polymer (Guildf.) 47(14), 4901–4904 (2006).
[Crossref]

X. Ou and M. Cakmak, “Influence of biaxial stretching mode on the crystalline texture in polylactic acid films,” Polymer (Guildf.) 49(24), 5344–5352 (2008).
[Crossref]

Proc SPIE Int Soc Opt Eng (1)

W. Goth, B. Yang, J. Lesicko, A. Allen, M. S. Sacks, and J. W. Tunnell, “Polarized spatial frequency domain imaging of heart valve fiber structure,” Proc SPIE Int Soc Opt Eng 9710, 971019 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Shen, H. Wang, Y. Xue, L. Yuan, X. Zhou, Z. Zhao, E. Dong, B. Liu, W. Liu, B. Cromeens, B. Adler, G. Besner, and R. X. Xu, “Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery,” Sci. Rep. 7(1), 11048 (2017).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

M. M. L. Arras, C. Grasl, H. Bergmeister, and H. Schima, “Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes,” Sci. Technol. Adv. Mater. 13(3), 035008 (2012).
[Crossref] [PubMed]

Other (4)

L. Weil, Crash Course: Quick Reference Guide to Medicine and Surgery-E-Book (Elsevier Health Sciences, 2014).

C. D. Fletcher, Diagnostic Histopathology of Tumors: 2-Volume Set with CD-ROMs (Elsevier Health Sciences, 2007).

E. Collett, Field Guide to Polarization (SPIE Press, 2005).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Electrospinning system. (a) Principle of the electrospinning process. (b) Schematic diagram of the process of collecting fibers (c) CAD design of the electrospinning system. (d) Experimental setup of the electrospinning system.
Fig. 2
Fig. 2 Overview of the polarized detection system in orthogonal mode. (a) Schematic diagram of the polarized detection system. (b-d) The analyzer and the polarizer are cross-polarized in the orthogonal mode, and the polarized light detected by the CCD camera is dependent of β the angle between the fast polarization axis of the sample and the polarizer. Here the polarizer is fixed and the analyzer is rotated to switch between the orthogonal and the perpendicular modes.
Fig. 3
Fig. 3 SEM images of electrospun PLA fibers at different cylinder rotational speeds. (a) 500 rpm, (b) 1000 rpm, (c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm, (f) 3000 rpm. The scale bar is 50 µm.
Fig. 4
Fig. 4 Distribution of collecting electrospun fibers orientations for a cylinder rotational speed of (a) 500 rpm, (b) 1000 rpm, (c) 1500 rpm, (d) 2000 rpm, (e) 2500 rpm, and (f) 3000 rpm. (g) Standard deviation for the distribution of fibers as a function of cylinder rotational speed.
Fig. 5
Fig. 5 Size distribution of the electrospun fibers collected for a cylinder rotational speed of: (a)500 rpm, (b)1000rpm, (c)1500rpm, (d)2000rpm, (e)2500rpm, and (f)3000 rpm.
Fig. 6
Fig. 6 Brightness of fibers at different positions. (a) Deviations of brightness of random ROIs in the same β on fibers collected with rotational speeds of cylinder from 500rpm to 3000rpm respectively. (b) Brightness-to-orientation curves of fibers collected with rotational speeds of cylinder from 500 rpm to 3000 rpm respectively.
Fig. 7
Fig. 7 Phantom fabrication process using precast PDMS layers and PLA fibers. (a-b) Fibers collected with the aluminum foil adhering to the cylinder. (c) Top: a blank petri dish is used for casting the PDMS top layer; bottom: a petri dish adhering with a rectangular cover glass (1 mm × 1 mm × 1.2 mm) is used for casting the grooved PDMS bottom layer. (d) Phantom fabricated by sandwiching the PLA fiber layer between the grooved PDMS bottom layer and the PDMS top layer. (e) Microscopic image of the produced phantom.
Fig. 8
Fig. 8 Single-channel polarized microscopic images of: (a) the PDMS phantom without PLA fiber embedment; (b-g) PDMS phantoms embedding PLA fibers collected at different cylinder rotational speeds from 500 rpm to 3000 rpm respectively; (h-i) regular dense fibrous tissue and fibroma dense fibrous tissue. The above figures were taken at the β of π /4. (j) POL values vs. sample orientations for the produced phantoms, biopsies of normal and fibroma dense fibrous tissue.

Tables (1)

Tables Icon

Table 1 The retardance levels for the phantoms, biopsies of dense fibrous tissue of collagenous fibroma and normal fibrous tissue at β = (2n + 1) π /4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s 2 = M 2 M p M 1 s 1 = I 0 2 [ sin 2 2β sin 2 σ 2 sin 2 2β sin 2 σ 2 0 0 ]
I= I 1 sin 2 2β sin 2 πdn λ
σ= i=1 18 n i ( θ i α) 2 / i=1 18 n i
POL= I // I I // + I
δ=2arcsin I/ I 1

Metrics