Abstract

Imaging guidance provided by optical coherence tomography (OCT) could improve the outcomes of atrial fibrillation (AF) ablation by providing detailed structural information of the pulmonary veins, which are critical targets during ablation. In this study, stitched volumetric OCT images of venoatrial junctions from post-mortem human hearts were acquired and compared to histology. Image features corresponding to venous media and myocardial sleeves, as well as fiber orientation and fibrosis, were identified and found to vary between veins. Imaging of detailed tissue architecture could improve understanding of the AF structural substrate within the pulmonary veins and assist the guidance of ablation procedures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart

Alexandre Castonguay, Joël Lefebvre, Philippe Pouliot, Pramod Avti, Mohammad Moeini, and Frédéric Lesage
Biomed. Opt. Express 8(11) 5027-5038 (2017)

Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography

Yu Gan and Christine P. Fleming
Biomed. Opt. Express 4(10) 2150-2165 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
    [Crossref] [PubMed]
  2. S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
    [Crossref] [PubMed]
  3. R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
    [Crossref] [PubMed]
  4. T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
    [Crossref] [PubMed]
  5. A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
    [Crossref] [PubMed]
  6. M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
    [Crossref] [PubMed]
  7. P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
    [Crossref] [PubMed]
  8. A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
    [Crossref] [PubMed]
  9. J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
    [Crossref] [PubMed]
  10. Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
    [Crossref] [PubMed]
  11. C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).
  12. H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
    [Crossref] [PubMed]
  13. A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
    [Crossref] [PubMed]
  14. Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
    [Crossref] [PubMed]
  15. Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
    [Crossref] [PubMed]
  16. Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
    [Crossref] [PubMed]
  17. F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
    [Crossref] [PubMed]
  18. X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
    [Crossref] [PubMed]
  19. X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” Journal of biophotonics, e201700204 (2017).
  20. T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
    [Crossref] [PubMed]
  21. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  22. W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
    [Crossref] [PubMed]

2018 (2)

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

2016 (3)

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

2015 (2)

A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

2011 (2)

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

2003 (3)

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

2002 (2)

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

2001 (1)

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

2000 (2)

T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1998 (1)

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Amir, S. B.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Anderson, R. H.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Aretz, H. T.

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

Arruda, M.

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Arruda, M. M.

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Ashikaga, H.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Becker, A. E.

T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
[Crossref] [PubMed]

Bishop, A.

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Bluemke, D. A.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Brooks, A. G.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Cabestrero, F.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

Cabrera, J. A.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Carrigan, T.

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Chen, P. S.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Chen, Y.

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

Clémenty, J.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Crépeau, J.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

De Bakker, J. M.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Dickfeld, T.

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

Dubuc, M.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Farré, J.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Fishbein, M. C.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Fleming, C. P.

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Fu, X.

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Gai, N.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Gan, Y.

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Y. Gan and C. P. Fleming, “Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography,” Biomed. Opt. Express 4(10), 2150–2165 (2013).
[Crossref] [PubMed]

Ganesan, A. N.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Garrigue, S.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Guerra, P. G.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Haïssaguerre, M.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Hamabe, A.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Hassink, R. J.

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

Hendon, C. P.

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Herzka, D. A.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Ho, S. Y.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Hocini, M.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Jaïs, P.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Janse, M. J.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Jenkins, M. W.

Kang, W.

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Karagueuzian, H. S.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Kawara, T.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Keane, D.

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

Kuklik, P.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Lau, D. H.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Le Métayer, P.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Le Mouroux, A.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Li, Z.

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

Lim, H. S.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Linnenbank, A. C.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Lye, T. H.

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

Marboe, C. C.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

McCulloch, A. D.

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

McVeigh, E. R.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Merino, J. L.

A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
[Crossref] [PubMed]

Miyauchi, Y.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Moreno, R.

A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
[Crossref] [PubMed]

Mori, S.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Myers, K. M.

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Nattel, S.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Navarro, F.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

Okuyama, Y.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Pak, H. N.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Pashakhanloo, F.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Potse, M.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Quiniou, G.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Roberts-Thomson, K. C.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Rollins, A. M.

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
[Crossref] [PubMed]

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Rosenthal, N.

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

Roy, D.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Rubio, J. M.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

Ruskin, J.

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

Saito, T.

T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
[Crossref] [PubMed]

Sánchez-Quintana, D.

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Sanchez-Recalde, A.

A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
[Crossref] [PubMed]

Sanders, P.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Shah, D.

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

Shah, D. C.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Shipp, N. J.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Sullivan, T.

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

Takahashi, A.

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Talajic, M.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Tang, Q.

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

Tardif, J.-C.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Thibault, B.

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

Tran, V. H.

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Trayanova, N. A.

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Tsay, D.

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

Vincent, K. P.

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

Vink, J. Y.

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Waki, K.

T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
[Crossref] [PubMed]

Wang, H.

X. Fu, Z. Wang, H. Wang, Y. T. Wang, M. W. Jenkins, and A. M. Rollins, “Fiber-optic catheter-based polarization-sensitive OCT for radio-frequency ablation monitoring,” Opt. Lett. 39(17), 5066–5069 (2014).
[Crossref] [PubMed]

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Wang, Y. T.

Wang, Z.

Wapner, R. J.

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Yao, W.

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Y. Gan, W. Yao, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Analyzing three-dimensional ultrastructure of human cervical tissue using optical coherence tomography,” Biomed. Opt. Express 6(4), 1090–1108 (2015).
[Crossref] [PubMed]

Zhou, S.

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (1)

T. H. Lye, K. P. Vincent, A. D. McCulloch, and C. P. Hendon, “Tissue-specific optical mapping models of swine atria informed by optical coherence tomography,” Biophys. J. 114(6), 1477–1489 (2018).
[Crossref] [PubMed]

Circ Arrhythm Electrophysiol (1)

F. Pashakhanloo, D. A. Herzka, H. Ashikaga, S. Mori, N. Gai, D. A. Bluemke, N. A. Trayanova, and E. R. McVeigh, “Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging,” Circ Arrhythm Electrophysiol 9(4), e004133 (2016).
[Crossref] [PubMed]

Circulation (3)

A. Hamabe, Y. Okuyama, Y. Miyauchi, S. Zhou, H. N. Pak, H. S. Karagueuzian, M. C. Fishbein, and P. S. Chen, “Correlation between anatomy and electrical activation in canine pulmonary veins,” Circulation 107(11), 1550–1555 (2003).
[Crossref] [PubMed]

M. Hocini, S. Y. Ho, T. Kawara, A. C. Linnenbank, M. Potse, D. Shah, P. Jaïs, M. J. Janse, M. Haïssaguerre, and J. M. De Bakker, “Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation,” Circulation 105(20), 2442–2448 (2002).
[Crossref] [PubMed]

J. A. Cabrera, D. Sánchez-Quintana, J. Farré, F. Navarro, J. M. Rubio, F. Cabestrero, R. H. Anderson, and S. Y. Ho, “Ultrasonic characterization of the pulmonary venous wall: echographic and histological correlation,” Circulation 106(8), 968–973 (2002).
[Crossref] [PubMed]

Eur. Heart J. Cardiovasc. Imaging (1)

A. Sanchez-Recalde, R. Moreno, and J. L. Merino, “Pulmonary vein stenosis after radiofrequency ablation: in vivo optical coherence tomography insights,” Eur. Heart J. Cardiovasc. Imaging 16(4), 459 (2015).
[Crossref] [PubMed]

Heart (1)

S. Y. Ho, J. A. Cabrera, V. H. Tran, J. Farré, R. H. Anderson, and D. Sánchez-Quintana, “Architecture of the pulmonary veins: relevance to radiofrequency ablation,” Heart 86(3), 265–270 (2001).
[Crossref] [PubMed]

Innovations in Cardiac Rhythm Management (1)

C. P. Fleming, N. Rosenthal, A. M. Rollins, and M. M. Arruda, “First in vivo real-time imaging of endocardial radiofrequency ablation by optical coherence tomography: Implications on safety and the birth of “electro-structural” substrate-guided ablation,” Innovations in Cardiac Rhythm Management 2, 199–201 (2011).

J. Am. Coll. Cardiol. (1)

R. J. Hassink, H. T. Aretz, J. Ruskin, and D. Keane, “Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation,” J. Am. Coll. Cardiol. 42(6), 1108–1114 (2003).
[Crossref] [PubMed]

J. Am. Heart Assoc. (1)

A. N. Ganesan, N. J. Shipp, A. G. Brooks, P. Kuklik, D. H. Lau, H. S. Lim, T. Sullivan, K. C. Roberts-Thomson, and P. Sanders, “Long-term outcomes of catheter ablation of atrial fibrillation: a systematic review and meta-analysis,” J. Am. Heart Assoc. 2(2), e004549 (2013).
[Crossref] [PubMed]

J. Am. Soc. Echocardiogr. (1)

P. G. Guerra, B. Thibault, M. Dubuc, M. Talajic, D. Roy, J. Crépeau, S. Nattel, and J.-C. Tardif, “Identification of atrial tissue in pulmonary veins using intravascular ultrasound,” J. Am. Soc. Echocardiogr. 16(9), 982–987 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

Y. Gan, D. Tsay, S. B. Amir, C. C. Marboe, and C. P. Hendon, “Automated classification of optical coherence tomography images of human atrial tissue,” J. Biomed. Opt. 21(10), 101407 (2016).
[Crossref] [PubMed]

H. Wang, W. Kang, T. Carrigan, A. Bishop, N. Rosenthal, M. Arruda, and A. M. Rollins, “In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation,” J. Biomed. Opt. 16(11), 110505 (2011).
[Crossref] [PubMed]

Z. Li, Q. Tang, T. Dickfeld, and Y. Chen, “Depth-resolved mapping of muscular bundles in myocardium pulmonary junction using optical coherence tomography,” J. Biomed. Opt. 23(7), 1–5 (2018).
[Crossref] [PubMed]

J. Cardiovasc. Electrophysiol. (1)

T. Saito, K. Waki, and A. E. Becker, “Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias,” J. Cardiovasc. Electrophysiol. 11(8), 888–894 (2000).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

M. Haïssaguerre, P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” N. Engl. J. Med. 339(10), 659–666 (1998).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Lett. (1)

PLoS One (1)

W. Yao, Y. Gan, K. M. Myers, J. Y. Vink, R. J. Wapner, and C. P. Hendon, “Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women,” PLoS One 11(11), e0166709 (2016).
[Crossref] [PubMed]

Other (1)

X. Yao, Y. Gan, Y. Ling, C. C. Marboe, and C. P. Hendon, “Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography,” Journal of biophotonics, e201700204 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagram of the dissection procedure and orientation of OCT image volume relative to the tissue. A representative example of the LIPV flattened for imaging is shown. RSPV = right superior pulmonary vein, RIPV = right inferior pulmonary vein, LSPV = left superior pulmonary vein, LIPV = left inferior pulmonary vein.
Fig. 2
Fig. 2 OCT b-scans (top) and corresponding Trichrome histology (bottom), showing OCT image textures and layer patterns corresponding to different endocardial and myocardial compositions. A, Endocardium with thickness within OCT depth penetration. B, Endocardium with thickness beyond OCT depth penetration. C, Endocardium with myointimal thickening. D, Endocardium with underlying myocardium with collagen fibers. Dotted yellow lines show representative regions of transition between the endocardium and myocardium. Dotted blue lines show representative regions of transition between loose collagen with myointimal cells and the endocardium. Scale bars represent 1 mm. e = endocardium; m = myocardium; i = loose collagen and myointimal cells; asterisk = imaging artifact from the sample z-Spacer.
Fig. 3
Fig. 3 En face OCT and histology images, showing fibrosis and fiber orientation. A, OCT en face image, shown 0.39 mm from the tissue surface, from heart #8. B, Corresponding en face histology image. Dotted yellow lines in the OCT image show boundaries between regions of endocardium and myocardium. White arrowheads indicate striations indicative of fiber orientation in OCT. C, OCT en face image, shown 0.30 mm from the tissue surface, from heart #3. D, OCT en face image, shown 0.38 mm from the tissue surface, from heart #5. E, Region within the dotted red box shown in C, at a depth of 0.29 mm. F, Region within the dotted red box shown in C, at a depth of 0.17 mm. G, Fiber angle over depth at the point indicated by the black asterisk in C. White double-sided arrows indicate general myofiber orientation trends. All scale bars indicate 1 mm.
Fig. 4
Fig. 4 OCT b-scans (top) and corresponding Trichrome histology (bottom), showing differences in OCT image texture corresponding to venous media and adventitia with different densities and distributions of connective tissue. A, Venous media and adventitia with a speckled image texture in OCT. B, Venous media and adventitia with a layered image texture in OCT. C, Venous media and adventitia with a smooth homogeneous image texture. Scale bars represent 1 mm. v = venous media; asterisk = imaging artifact from the sample z-Spacer.
Fig. 5
Fig. 5 OCT imaging of a venoatrial junction and corresponding histology, showing change in depth penetration near the end of the myocardial sleeve. A, Stitched en face region, shown 0.34 mm from the tissue surface from heart #10. B, Stitched b-scan corresponding to the orange line in A. C, Corresponding Trichrome histology to B. Dotted white lines show the approximate location of the PV ostia. Dashed green lines show the approximate area of transition from myocardium to venous media and adventitia. Dotted yellow lines show representative regions of transition between the endocardium and myocardium. The blue dotted boxes represent the 3D ROI from which texture and fiber orientation statistics were calculated. All scale bars indicate 1 mm. LA = left atrium, RIPV = right inferior pulmonary vein; e = endocardium; m = myocardium; v = venous media.
Fig. 6
Fig. 6 OCT imaging of a venoatrial junction and corresponding histology, showing change in image texture near the end of the myocardial sleeve. A, Stitched en face region, shown 0.50 mm from the tissue surface from heart #4. B, Stitched b-scan corresponding to the orange line in D. C, Corresponding Trichrome histology to E. Dotted white lines show the approximate location of the PV ostia. Dashed green lines show the approximate area of transition from myocardium to venous media and adventitia. Dotted yellow lines show representative regions of transition between the endocardium and myocardium. All scale bars indicate 1 mm. LA = left atrium, LIPV = left inferior pulmonary vein; e = endocardium; m = myocardium; v = venous media.
Fig. 7
Fig. 7 OCT imaging of a venoatrial junction and corresponding histology, showing changes in endocardial thickness and depth penetration, as well as fibrosis. A, LIPV, prior to dissection, from heart #2. B, LIPV from A, post-dissection. C, En face region, shown 0.39 mm from the tissue surface, corresponding to the red box in B. A zoomed in view of a sub-region is shown to show details of the fibrosis patterns. D, Stitched b-scan corresponding to the orange line in C. E & F, Corresponding Trichrome histology to D. Dotted white lines show the approximate location of the PV ostia. Dashed green lines show the approximate area of transition from myocardium to venous media and adventitia. All scale bars indicate 1 mm. Dotted yellow lines show representative regions of transition between the endocardium and myocardium. The blue dotted boxes show the ROI from which texture and fiber orientation statistics were calculated. LA = left atrium; LIPV = left inferior pulmonary vein; e = endocardium; m = myocardium; v = venous media.
Fig. 8
Fig. 8 Cases where identification of pulmonary vein sleeves is ambiguous in OCT imaging. A, OCT b-scan near the LIPV from heart #7. B, Corresponding Trichrome histology to C. C, OCT b-scan near the LSPV from heart #4. D, Corresponding Trichrome histology to C. Dotted yellow lines show representative regions of transition between the endocardium and myocardium. Dotted blue lines show representative regions of transition between loose collagen with myointimal cells and the endocardium. Dashed green lines show the approximate area of transition from myocardium to transmural connective tissue. All scale bars indicate 1 mm. e = endocardium; m = myocardium; i = loose collagen and myointimal cells.

Tables (2)

Tables Icon

Table 1 Donor Characteristics

Tables Icon

Table 2 Endocardial Thickness, where Myocardium within OCT Imaging Depth