Abstract

The infrared (IR) inhibition of axonal activities in the crayfish neuromuscular preparation is studied using 2 µm IR light pulses with varying durations. The intracellular neuronal activities are monitored with two-electrode current clamp, while the IR-induced temperature changes are measured by the open patch technique simultaneously. It is demonstrated that the IR pulses can reversibly shape or block locally initiated action potentials. Suppression of the AP amplitude and duration and decrease in axonal excitability by IR pulses are quantitatively analyzed. While the AP amplitude and duration decrease similarly during IR illumination, it is discovered that the recovery of the AP duration after the IR pulses is slower than that of the AP amplitude. An IR-induced decrease in the input resistance (8.8%) is detected and discussed together with the temperature dependent changes in channel kinetics as contributing factors for the inhibition reported here.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons

Lambert Paris, Isabelle Marc, Benoit Charlot, Michel Dumas, Jean Valmier, and Fabrice Bardin
Biomed. Opt. Express 8(10) 4568-4578 (2017)

Elucidating the temporal dynamics of optical birefringence changes in crustacean nerves

Ali H. Badreddine, Kurt J. Schoener, and Irving J. Bigio
Biomed. Opt. Express 6(10) 4165-4178 (2015)

Label-free optical detection of action potential in mammalian neurons

Subrata Batabyal, Sarmishtha Satpathy, Loan Bui, Young-Tae Kim, Samarendra Mohanty, Robert Bachoo, and Digant P. Davé
Biomed. Opt. Express 8(8) 3700-3713 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
    [Crossref]
  2. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
    [Crossref]
  3. N. I. Smith, Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, “A femtosecond laser pacemaker for heart muscle cells,” Opt. Express 16(12), 8604 (2008).
    [Crossref]
  4. M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
    [Crossref]
  5. C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
    [Crossref]
  6. C.-P. Richter and X. Tan, “Photons and neurons,” Hear. Res. 311, 72–88 (2014).
    [Crossref]
  7. M. Chernov and A. W. Roe, “Infrared neural stimulation: a new stimulation tool for central nervous system applications,” Neurophotonics 1(1), 011011 (2014).
    [Crossref]
  8. J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
    [Crossref]
  9. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
    [Crossref]
  10. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
    [Crossref]
  11. Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
    [Crossref]
  12. M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
    [Crossref]
  13. M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
    [Crossref]
  14. G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
    [Crossref]
  15. J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
    [Crossref]
  16. V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
    [Crossref]
  17. E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
    [Crossref]
  18. H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
    [Crossref]
  19. M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. Krüger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
    [Crossref]
  20. A. Rettenmaier, T. Lenarz, and G. Reuter, “Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells,” Biomed. Opt. Express 5(4), 1014 (2014).
    [Crossref]
  21. H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
    [Crossref]
  22. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
    [Crossref]
  23. E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng. 11(1), 016001 (2014).
    [Crossref]
  24. J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
    [Crossref]
  25. A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
    [Crossref]
  26. A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
    [Crossref]
  27. Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
    [Crossref]
  28. E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
    [Crossref]
  29. X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
    [Crossref]
  30. Q. Xia and T. Nyberg, “Inhibition of cortical neural networks using infrared laser,” J. Biophotonics 12(7), e201800403 (2019).
    [Crossref]
  31. A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
    [Crossref]
  32. Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
    [Crossref]
  33. A. L. Hodgkin and B. Katz, “The effect of temperature on the electrical activity of the giant axon of the squid,” J. Physiol. 109(1-2), 240–249 (1949).
    [Crossref]
  34. A. F. Huxley, “Ion movements during nerve activity,” Ann. N. Y. Acad. Sci. 81(2), 221–246 (1959).
    [Crossref]
  35. M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
    [Crossref]
  36. J.-W. Lin, “Spatial variation in membrane excitability modulated by 4-AP-sensitive K + channels in the axons of the crayfish neuromuscular junction,” J. Neurophysiol. 107(10), 2692–2702 (2012).
    [Crossref]
  37. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28(9), 1714 (1989).
    [Crossref]
  38. J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
    [Crossref]
  39. D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
    [Crossref]
  40. Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
    [Crossref]
  41. C. Montell, “Physiology, phylogeny, and functions of the TRP superfamily of cation channels,” Sci. STKE 2001(90), re1 (2001).
    [Crossref]
  42. H. Li, “TRP channel classification,” in Advances in Experimental Medicine and Biology (Springer New York LLC, 2017), Vol. 976, pp. 1–8.
  43. K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
    [Crossref]
  44. J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
    [Crossref]
  45. D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
    [Crossref]
  46. A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.
  47. A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
    [Crossref]
  48. H. Bostock and P. Grafe, “Activity-dependent excitability changes in normal and demyelinated rat spinal root axons,” J. Physiol. 365(1), 239–257 (1985).
    [Crossref]

2019 (3)

X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
[Crossref]

Q. Xia and T. Nyberg, “Inhibition of cortical neural networks using infrared laser,” J. Biophotonics 12(7), e201800403 (2019).
[Crossref]

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

2018 (3)

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

2017 (3)

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
[Crossref]

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

2016 (3)

D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
[Crossref]

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
[Crossref]

2014 (9)

E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng. 11(1), 016001 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

C.-P. Richter and X. Tan, “Photons and neurons,” Hear. Res. 311, 72–88 (2014).
[Crossref]

M. Chernov and A. W. Roe, “Infrared neural stimulation: a new stimulation tool for central nervous system applications,” Neurophotonics 1(1), 011011 (2014).
[Crossref]

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

A. Rettenmaier, T. Lenarz, and G. Reuter, “Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells,” Biomed. Opt. Express 5(4), 1014 (2014).
[Crossref]

2013 (1)

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

2012 (7)

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
[Crossref]

J.-W. Lin, “Spatial variation in membrane excitability modulated by 4-AP-sensitive K + channels in the axons of the crayfish neuromuscular junction,” J. Neurophysiol. 107(10), 2692–2702 (2012).
[Crossref]

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

M. Schultz, P. Baumhoff, H. Maier, I. U. Teudt, A. Krüger, T. Lenarz, and A. Kral, “Nanosecond laser pulse stimulation of the inner ear-a wavelength study,” Biomed. Opt. Express 3(12), 3332–3345 (2012).
[Crossref]

2011 (3)

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

2010 (2)

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

2009 (1)

J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
[Crossref]

2008 (1)

2007 (2)

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

2005 (2)

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

2001 (1)

C. Montell, “Physiology, phylogeny, and functions of the TRP superfamily of cation channels,” Sci. STKE 2001(90), re1 (2001).
[Crossref]

1991 (1)

K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
[Crossref]

1989 (1)

1985 (1)

H. Bostock and P. Grafe, “Activity-dependent excitability changes in normal and demyelinated rat spinal root axons,” J. Physiol. 365(1), 239–257 (1985).
[Crossref]

1959 (1)

A. F. Huxley, “Ion movements during nerve activity,” Ann. N. Y. Acad. Sci. 81(2), 221–246 (1959).
[Crossref]

1949 (1)

A. L. Hodgkin and B. Katz, “The effect of temperature on the electrical activity of the giant axon of the squid,” J. Physiol. 109(1-2), 240–249 (1949).
[Crossref]

Albea, J.

Albert, E. S.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Ando, J.

Bardet, S. M.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Bardin, F.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Barrett, E. F.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

Barrett, J. N.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

Bas, E.

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

Baumhoff, P.

Bec, J. M.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Beier, H. T.

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

Bezanilla, F.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

Bostock, H.

H. Bostock and P. Grafe, “Activity-dependent excitability changes in normal and demyelinated rat spinal root axons,” J. Physiol. 365(1), 239–257 (1985).
[Crossref]

Bouchard, M. B.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Cantu, J. C.

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

Cayce, J. M.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

Chabbert, C.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Chekroud, K.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Chen, B. R.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Chen, G.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

Chernov, M.

M. Chernov and A. W. Roe, “Infrared neural stimulation: a new stimulation tool for central nervous system applications,” Neurophotonics 1(1), 011011 (2014).
[Crossref]

Chernov, M. M.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Chiel, H. J.

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Delaney, K.

K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
[Crossref]

Desmadryl, G.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Dittami, G. M.

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

Doughman, Y.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Duke, A. R.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Dumas, M.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Feng, H.-J.

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

Frerck, M. J.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

Friedman, R. M.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

Fujioka, H.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Fujita, K.

Gaboyard, S.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Gallagher, M. J.

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

Ganguly, M.

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

Grafe, P.

H. Bostock and P. Grafe, “Activity-dependent excitability changes in normal and demyelinated rat spinal root axons,” J. Physiol. 365(1), 239–257 (1985).
[Crossref]

Grosberg, L. E.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Gu, S.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Gupta, C.

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

Hamel, C.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Hill, A. P.

Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
[Crossref]

Hillman, E. M. C.

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Hitchcock, R. W.

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

Hodgkin, A. L.

A. L. Hodgkin and B. Katz, “The effect of temperature on the electrical activity of the giant axon of the squid,” J. Physiol. 109(1-2), 240–249 (1949).
[Crossref]

Holman, H. A.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

Homma, K.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

Horn, C. C.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Huxley, A. F.

A. F. Huxley, “Ion movements during nerve activity,” Ann. N. Y. Acad. Sci. 81(2), 221–246 (1959).
[Crossref]

Ibey, B. L.

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

Iwanaga, S.

Jansen, E. D.

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

Jenkins, M. W.

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
[Crossref]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Jorgensen, E. M.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

Kao, C.

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

Kao, J. P. Y.

A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.

Katz, B.

A. L. Hodgkin and B. Katz, “The effect of temperature on the electrical activity of the giant axon of the squid,” J. Physiol. 109(1-2), 240–249 (1949).
[Crossref]

Kawata, S.

Kim, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

Kimmel, E.

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
[Crossref]

Konrad, P.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

Konrad, P. E.

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

Kral, A.

Krüger, A.

Kumamoto, Y.

Lasher, R. A.

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

Lefort, C.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Lenaers, G.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Lenarz, T.

Leveque, P.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Li, G.

A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.

Li, H.

H. Li, “TRP channel classification,” in Advances in Experimental Medicine and Biology (Springer New York LLC, 2017), Vol. 976, pp. 1–8.

Lin, J.-W.

X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
[Crossref]

J.-W. Lin, “Spatial variation in membrane excitability modulated by 4-AP-sensitive K + channels in the axons of the crayfish neuromuscular junction,” J. Neurophysiol. 107(10), 2692–2702 (2012).
[Crossref]

Liu, B.

J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
[Crossref]

Liu, Q.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

Lothet, E. H.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Lu, H.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

Lumbreras, V.

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

Macdonald, R. L.

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

Mahadevan-Jansen, A.

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

Mahavaden-Jansen, A.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

Maier, H.

Marc, I.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Mariappan, K.

Martens, S.

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

Matic, A. I.

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

Matthewman, C.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

McCormick, D. A.

Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
[Crossref]

McManus, J. M.

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

Milner, T.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

Montell, C.

C. Montell, “Physiology, phylogeny, and functions of the TRP superfamily of cation channels,” Sci. STKE 2001(90), re1 (2001).
[Crossref]

Moreau, D.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Mou, Z.

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Muller, A.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Musick, J. D.

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

Nikolic, K.

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Nyberg, T.

Q. Xia and T. Nyberg, “Inhibition of cortical neural networks using infrared laser,” J. Biophotonics 12(7), e201800403 (2019).
[Crossref]

O’Connor, R. P.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Pas, J.

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Pasos, J.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

Pekala, D.

D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
[Crossref]

Peterson, E. J.

E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng. 11(1), 016001 (2014).
[Crossref]

Plaksin, M.

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
[Crossref]

Qin, F.

J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
[Crossref]

Querry, M. R.

Raastad, M.

D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
[Crossref]

Rabbitt, R. D.

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

Rajguru, S. M.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

Rettenmaier, A.

Reuter, G.

Rhee, A. Y.

A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.

Richter, C.-P.

C.-P. Richter and X. Tan, “Photons and neurons,” Hear. Res. 311, 72–88 (2014).
[Crossref]

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

Rincon, S.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

Roe, A. W.

M. Chernov and A. W. Roe, “Infrared neural stimulation: a new stimulation tool for central nervous system applications,” Neurophotonics 1(1), 011011 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

Rollins, A. M.

Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
[Crossref]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Sander, M. Y.

X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
[Crossref]

Schultz, M.

Shapira, E.

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

Shapiro, M. G.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

Shaw, K. M.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Shoham, S.

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
[Crossref]

Singh, J.

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

Smith, N. I.

Stolz, D. B.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Szkudlarek, H.

D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
[Crossref]

Tan, X.

C.-P. Richter and X. Tan, “Photons and neurons,” Hear. Res. 311, 72–88 (2014).
[Crossref]

Tank, D. W.

K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
[Crossref]

Teudt, I. U.

Thomas, R. J.

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

Tolstykh, G. P.

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

Toumazou, C.

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Travo, C.

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

Triantis, I. F.

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Tyler, D. J.

E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng. 11(1), 016001 (2014).
[Crossref]

Villarreal, S.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

Walsh, A. J.

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

Walsh, J. T.

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

Wang, Y. T.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
[Crossref]

Watanabe, M.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

Wells, J.

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett. 30(5), 504 (2005).
[Crossref]

A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.

Wells, J. D.

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

Weng, S.

Wieliczka, D. M.

Woods, V. M.

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

Xia, Q.

Q. Xia and T. Nyberg, “Inhibition of cortical neural networks using infrared laser,” J. Biophotonics 12(7), e201800403 (2019).
[Crossref]

Yao, J.

J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
[Crossref]

Yu, Y.

Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
[Crossref]

Zhu, X.

X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
[Crossref]

Zhuo, J.

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

Zucker, R. S.

K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
[Crossref]

Ann. N. Y. Acad. Sci. (1)

A. F. Huxley, “Ion movements during nerve activity,” Ann. N. Y. Acad. Sci. 81(2), 221–246 (1959).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biophys. J. (3)

J. Yao, B. Liu, and F. Qin, “Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies,” Biophys. J. 96(9), 3611–3619 (2009).
[Crossref]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve,” Biophys. J. 93(7), 2567–2580 (2007).
[Crossref]

Q. Liu, M. J. Frerck, H. A. Holman, E. M. Jorgensen, and R. D. Rabbitt, “Exciting Cell Membranes with a Blustering Heat Shock,” Biophys. J. 106(8), 1570–1577 (2014).
[Crossref]

Cell Calcium (1)

J. M. Cayce, M. B. Bouchard, M. M. Chernov, B. R. Chen, L. E. Grosberg, E. D. Jansen, E. M. C. Hillman, and A. Mahadevan-Jansen, “Calcium imaging of infrared-stimulated activity in rodent brain,” Cell Calcium 55(4), 183–190 (2014).
[Crossref]

Hear. Res. (1)

C.-P. Richter and X. Tan, “Photons and neurons,” Hear. Res. 311, 72–88 (2014).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

Z. Mou, I. F. Triantis, V. M. Woods, C. Toumazou, and K. Nikolic, “A Simulation Study of the Combined Thermoelectric Extracellular Stimulation of the Sciatic Nerve of the Xenopus Laevis: The Localized Transient Heat Block,” IEEE Trans. Biomed. Eng. 59(6), 1758–1769 (2012).
[Crossref]

J. Biomed. Opt. (2)

Y. T. Wang, A. M. Rollins, and M. W. Jenkins, “Infrared inhibition of embryonic hearts,” J. Biomed. Opt. 21(6), 060505 (2016).
[Crossref]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt. 10(6), 064003 (2005).
[Crossref]

J. Biophotonics (2)

D. Moreau, C. Lefort, J. Pas, S. M. Bardet, P. Leveque, and R. P. O’Connor, “Infrared neural stimulation induces intracellular Ca 2+ release mediated by phospholipase C,” J. Biophotonics 11(2), e201700020 (2018).
[Crossref]

Q. Xia and T. Nyberg, “Inhibition of cortical neural networks using infrared laser,” J. Biophotonics 12(7), e201800403 (2019).
[Crossref]

J. Neural Eng. (4)

A. R. Duke, H. Lu, M. W. Jenkins, H. J. Chiel, and E. D. Jansen, “Spatial and temporal variability in response to hybrid electro-optical stimulation,” J. Neural Eng. 9(3), 036003 (2012).
[Crossref]

M. Ganguly, M. W. Jenkins, E. D. Jansen, and H. J. Chiel, “Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study,” J. Neural Eng. 16(3), 036020 (2019).
[Crossref]

H. T. Beier, G. P. Tolstykh, J. D. Musick, R. J. Thomas, and B. L. Ibey, “Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells,” J. Neural Eng. 11(6), 066006 (2014).
[Crossref]

E. J. Peterson and D. J. Tyler, “Motor neuron activation in peripheral nerves using infrared neural stimulation,” J. Neural Eng. 11(1), 016001 (2014).
[Crossref]

J. Neurophysiol. (4)

V. Lumbreras, E. Bas, C. Gupta, and S. M. Rajguru, “Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling,” J. Neurophysiol. 112(6), 1246–1255 (2014).
[Crossref]

E. S. Albert, J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, “TRPV4 channels mediate the infrared laser-evoked response in sensory neurons,” J. Neurophysiol. 107(12), 3227–3234 (2012).
[Crossref]

J.-W. Lin, “Spatial variation in membrane excitability modulated by 4-AP-sensitive K + channels in the axons of the crayfish neuromuscular junction,” J. Neurophysiol. 107(10), 2692–2702 (2012).
[Crossref]

J. N. Barrett, S. Rincon, J. Singh, C. Matthewman, J. Pasos, E. F. Barrett, and S. M. Rajguru, “Pulsed infrared releases ca2+ from the endoplasmic reticulum of cultured spiral ganglion neurons,” J. Neurophysiol. 120(2), 509–524 (2018).
[Crossref]

J. Neurosci. (1)

K. Delaney, D. W. Tank, and R. S. Zucker, “Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction,” J. Neurosci. 11(9), 2631–2643 (1991).
[Crossref]

J. Neurosci. Methods (2)

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods 163(2), 326–337 (2007).
[Crossref]

H.-J. Feng, C. Kao, M. J. Gallagher, E. D. Jansen, A. Mahadevan-Jansen, P. E. Konrad, and R. L. Macdonald, “Alteration of GABAergic neurotransmission by pulsed infrared laser stimulation,” J. Neurosci. Methods 192(1), 110–114 (2010).
[Crossref]

J. Physiol. (3)

G. M. Dittami, S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, “Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes,” J. Physiol. 589(6), 1295–1306 (2011).
[Crossref]

A. L. Hodgkin and B. Katz, “The effect of temperature on the electrical activity of the giant axon of the squid,” J. Physiol. 109(1-2), 240–249 (1949).
[Crossref]

H. Bostock and P. Grafe, “Activity-dependent excitability changes in normal and demyelinated rat spinal root axons,” J. Physiol. 365(1), 239–257 (1985).
[Crossref]

Laser Photonics Rev. (1)

C.-P. Richter, A. I. Matic, J. D. Wells, E. D. Jansen, and J. T. Walsh, “Neural stimulation with optical radiation,” Laser Photonics Rev. 5(1), 68–80 (2011).
[Crossref]

Nat. Commun. (2)

M. Plaksin, E. Kimmel, and S. Shoham, “Correspondence: Revisiting the theoretical cell membrane thermal capacitance response,” Nat. Commun. 8(1), 1431 (2017).
[Crossref]

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun. 3(1), 736 (2012).
[Crossref]

Nat. Photonics (1)

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics 4(9), 623–626 (2010).
[Crossref]

NeuroImage (2)

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” NeuroImage 57(1), 155–166 (2011).
[Crossref]

J. M. Cayce, R. M. Friedman, G. Chen, E. D. Jansen, A. Mahadevan-Jansen, and A. W. Roe, “Infrared neural stimulation of primary visual cortex in non-human primates,” NeuroImage 84, 181–190 (2014).
[Crossref]

Neurophotonics (2)

M. Chernov and A. W. Roe, “Infrared neural stimulation: a new stimulation tool for central nervous system applications,” Neurophotonics 1(1), 011011 (2014).
[Crossref]

A. J. Walsh, G. P. Tolstykh, S. Martens, B. L. Ibey, and H. T. Beier, “Action potential block in neurons by infrared light,” Neurophotonics 3(4), 040501 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. X (1)

M. Plaksin, E. Shapira, E. Kimmel, and S. Shoham, “Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects,” Phys. Rev. X 8(1), 011043 (2018).
[Crossref]

Physiol Rep (1)

D. Pekala, H. Szkudlarek, and M. Raastad, “Typical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever-like temperatures,” Physiol Rep 4(19), e12981 (2016).
[Crossref]

PLoS Comput. Biol. (1)

Y. Yu, A. P. Hill, and D. A. McCormick, “Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials,” PLoS Comput. Biol. 8(4), e1002456 (2012).
[Crossref]

Proc. SPIE (2)

X. Zhu, J.-W. Lin, and M. Y. Sander, “Infrared block of Na+ and Ca2+ spikes in in crayfish neuromuscular junction,” Proc. SPIE 10866, 108660E (2019).
[Crossref]

A. J. Walsh, J. C. Cantu, B. L. Ibey, and H. T. Beier, “Short infrared laser pulses increase cell membrane fluidity,” Proc. SPIE 10062, 100620D (2017).
[Crossref]

Sci. Rep. (2)

E. H. Lothet, K. M. Shaw, H. Lu, J. Zhuo, Y. T. Wang, S. Gu, D. B. Stolz, E. D. Jansen, C. C. Horn, H. J. Chiel, and M. W. Jenkins, “Selective inhibition of small-diameter axons using infrared light,” Sci. Rep. 7(1), 3275 (2017).
[Crossref]

A. R. Duke, M. W. Jenkins, H. Lu, J. M. McManus, H. J. Chiel, and E. D. Jansen, “Transient and selective suppression of neural activity with infrared light,” Sci. Rep. 3(1), 2600 (2013).
[Crossref]

Sci. STKE (1)

C. Montell, “Physiology, phylogeny, and functions of the TRP superfamily of cation channels,” Sci. STKE 2001(90), re1 (2001).
[Crossref]

Other (2)

H. Li, “TRP channel classification,” in Advances in Experimental Medicine and Biology (Springer New York LLC, 2017), Vol. 976, pp. 1–8.

A. Y. Rhee, G. Li, J. Wells, and J. P. Y. Kao, “Photostimulation of sensory neurons of the rat vagus nerve,” in S. L. Jacques, W. P. Roach, and R. J. Thomas, eds. (2008), p. 68540E.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Illustration of the experimental configuration and recorded temperature transients. (a) The crayfish opener neuromuscular preparation was glued to the bottom of the Petri dish. The current injection electrode (I electrode) used to elicit APs was located closer to the primary branch of the inhibitory axon and the voltage recording electrode (V electrode) was placed ∼200 µm to 300 µm distal to the branching point. An optical fiber with a 50 µm core diameter tilted at an angle of ∼28° to the horizontal plane delivers infrared light. The tip of an open patch pipette was placed close to the axon and I electrode in the illuminated area. (b) Representative temperature transients converted from the open patch pipette recordings. IR pulse durations varied from 1 ms to 500 ms, from left to right, which resulted in temperature changes between 2 to 12°C.
Fig. 2.
Fig. 2. Impact of 20 ms IR pulses on AP amplitude and duration. (a) Representative AP trains initiated by a 22 nA current step with (red) and without (blue) a 20 ms pulse IR illumination. The red bar above the AP traces indicates the timing (0.2 s to 0.22 s) of the IR pulse. These traces were recorded in the presence of 200 µM 4-AP. The grey line indicates the timing of the current step. The arrows identify APs to be compared in detail in (b). (b) Comparison of AP waveforms on an expanded time scale as indicated by the corresponding arrows in (a) and (b). Top, two APs with and without IR illumination during the 0.2 s to 0.22 s time window. The IR pulse reduced the AP amplitude and duration. Bottom, two APs ∼40 ms after the IR pulse. The AP waveform recovered shortly after the IR pulse. The horizontal and vertical arrows in the bottom panel indicate the measurement parameters for AP amplitude and duration measurements. (c) The phase plot of the two APs in (b) top panel shows a reduction in the AP amplitude. The arrow indicates a gradual rise near the point of AP initiation. The dashed line identifies the point where dv/dt = 25 V/s as the threshold of AP initiation. (d) Scatter plot of the IR induced reduction in AP amplitude and duration ($N\, = $ 7). Each type of symbol represents data from one crayfish preparation. The black symbols represent 4-AP treated preparations while the gray solid symbols illustrate those without 4-AP. The average and standard error of the mean for decreased AP amplitude and duration are highlighted in bold with values of 3.4 ± 0.06 mV and 58 ± 2.9 µs.
Fig. 3.
Fig. 3. A 500 ms IR pulse blocked the AP initiation and shaped the AP waveforms. (a) AP trains initiated by a 16 nA step, which was slightly above the firing threshold. The IR pulse completely blocked the APs. (b) AP trains initiated by a 17 nA current step. The AP amplitude and frequency were suppressed before the AP firing was completely inhibited, which recovered after the IR pulse. (c) High firing frequency AP trains from a 19 nA current step. The AP amplitude was progressively decreased by the IR pulse. The red bar above the AP trains indicates the timing of IR pulses (0.2 s to 0.7 s). The grey line illustrates the timing of the current injection. The solid dots under the AP trains represent the AP firing. (d) Comparison of AP waveforms expanded in time with and without the IR pulse. The APs were obtained from a time point close to the end of the IR illumination (arrow in (c)). The IR light reduced AP amplitude and duration. These traces were recorded in the absence of 4-AP.
Fig. 4.
Fig. 4. Dynamics of IR suppression on the AP amplitude and duration evoked by a 21 nA current step. (a), (b) Measured AP amplitude and duration as defined in Fig. 2(b) with and without IR light. Each data point was measured from an AP and plotted against the timing of that AP. The data points were collected from the same preparation based on 5 trials. (c) Comparison of dynamic changes of AP amplitude, duration and temperature. Changes in AP amplitude (duration) were obtained by subtracting data points measured without IR illumination from the amplitude (duration) with IR light. The data after the IR pulse, from 0.7 s to 1.6 s, was fitted with a sum of two decaying exponentials respectively (smooth lines). The amplitude trace (open circle) recovered faster than the duration (cross) after the IR pulse. The red bar above indicates the timing and duration of the IR light. The grey line illustrates the timing and duration of the current injection. These traces were recorded in the absence of 4-AP.
Fig. 5.
Fig. 5. Effect of a 500 ms IR pulse on the input resistance. (a) The IR pulse decreases the membrane voltage deflections during both hyperpolarization and subthreshold depolarization. The red bar above indicates the timing of the IR light. The grey line illustrates the timing and duration of the current injection. (b) The average membrane potentials with and without IR pulse recorded between 0.68 s and 0.7 s (last 20 ms of IR illumination) are plotted against the corresponding current injection steps. Linear fitting shows the decrease in slope with IR pulses. Each data point was averaged over 5–10 trials.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ln ( I ) = E a R 1 T 0 + ln ( I 0 ) E a R 1 T
T = 1 1 T 0 R E a ln ( I I 0 )