Abstract

Rheumatoid arthritis causes changes in the optical properties of tissues in the joints, which could be detected using spectral imaging. This has the potential for development of low cost, non-contact method for early detection of the disease. In this work, hyperspectral imaging system was used to obtain 24 images of proximal interphalangeal joints of 12 healthy volunteers. A large inter-subject variability was observed, but still an increase in transmittance in the spectral range of 600 nm – 950 nm could be associated to the joint in all images. The results of experiments were compared to detailed simulations of light propagation trough tissue. For the simulations, voxelized 3D models of unaffected and inflamed human joints with realistic tissue distributions were constructed from an in-vivo MRI scan of a healthy human finger. The simulated model of healthy finger successfully reproduced the experimental data, while the affected models indicated that the inflammation introduces detectable differences in the spectral and spatial features. The results were used to guide the design of a dedicated imaging system for detection of rheumatoid arthritis, that will be used in an upcoming clinical study.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral, non-contact diffuse optical tomography of healthy human finger joints

Daniel Lighter, James Hughes, Iain Styles, Andrew Filer, and Hamid Dehghani
Biomed. Opt. Express 9(4) 1445-1460 (2018)

Multispectral quantitative photoacoustic imaging of osteoarthritis in finger joints

Jiaying Xiao and Jishan He
Appl. Opt. 49(30) 5721-5727 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
    [Crossref]
  2. J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
    [Crossref]
  3. D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
    [Crossref]
  4. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref]
  5. Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
    [Crossref]
  6. L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
    [Crossref]
  7. L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
    [Crossref]
  8. X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
    [Crossref]
  9. J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
    [Crossref]
  10. A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
    [Crossref]
  11. A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
    [Crossref]
  12. G. L. Lu and B. W. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref]
  13. J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
    [Crossref]
  14. I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
    [Crossref]
  15. D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
    [Crossref]
  16. M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
    [Crossref]
  17. R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
    [Crossref]
  18. E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
    [Crossref]
  19. J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
    [Crossref]
  20. S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
    [Crossref]
  21. M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
    [Crossref]
  22. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref]
  23. R. Nachabe, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
    [Crossref]
  24. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
    [Crossref]
  25. A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
    [Crossref]
  26. M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
    [Crossref]

2019 (1)

D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

2018 (2)

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

2016 (2)

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
[Crossref]

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

2015 (3)

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

2014 (3)

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

G. L. Lu and B. W. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
[Crossref]

2013 (3)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

2010 (3)

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
[Crossref]

R. Nachabe, B. H. W. Hendriks, M. van der Voort, A. E. Desjardins, and H. J. C. M. Sterenborg, “Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm,” Biomed. Opt. Express 1(5), 1432–1442 (2010).
[Crossref]

2006 (1)

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

2004 (1)

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

2003 (1)

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

2002 (1)

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

2000 (1)

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

1999 (2)

S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref]

1998 (1)

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

1993 (1)

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Aletaha, D.

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
[Crossref]

Bassi, A.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Berzina, A.

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

Beuthan, J.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

Bevilacqua, F.

Bhavaraju, N. C.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Blaschke, S.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

Bude, R. O.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Carson, P. L.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Chamberland, D.

D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
[Crossref]

Chamberland, D. L.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Chikoidze, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Chu, E. A.

S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
[Crossref]

Cubeddu, R.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Dehghani, H.

D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Delpy, D. T.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Depeursinge, C.

Descalle, M.

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

Desjardins, A. E.

Dolenec, R.

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

Dymerska, B.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Essenpreis, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Fei, B. W.

G. L. Lu and B. W. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref]

Filer, A.

D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Fowlkes, J. B.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Francis, S.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Frass-Kriegl, R.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Giambattistelli, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Girish, D.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Girish, G.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Goluch, S.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Gross, J. D.

Hendriks, B. H. W.

Hielscher, A. H.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Huizinga, T. W. J.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

Jamadar, D. A.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Jia, J. F.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

Jiang, H. B.

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

Jiang, Y. B.

D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
[Crossref]

Jo, J.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Kim, E.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Kim, H. K.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

Kloppenburg, M.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Krabben, A.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Krause, A.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Kuehne, A.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Kuzmina, I.

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

Lacis, M.

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

Laing, T. J.

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

Laistler, E.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

Lighter, D.

D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

Lu, G. L.

G. L. Lu and B. W. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref]

Madsen, S. J.

S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
[Crossref]

Marquardt, A.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Marquet, P.

Martin, W. R.

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

Mayer, P.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

McInnes, I. B.

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
[Crossref]

Mesecke-von Rheinbaben, I.

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Metzger, G.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Milanic, M.

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
[Crossref]

Milner, T. E.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Montejo, L. D.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

Moser, E.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Muller, G. A.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Nachabe, R.

Netz, U. J.

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

Oshina, I.

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

Paluchowski, L. A.

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
[Crossref]

Pifferi, A.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Piguet, D.

Prahl, S. A.

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

Randeberg, L. L.

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
[Crossref]

Reuss-Borst, M.

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Roessler, B. J.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Rost, H.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Scheel, A. K.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Schoones, J. W.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Schwaighofer, A.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

Sieg, J.

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Smolen, J. S.

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
[Crossref]

Sobel, E. S.

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

Spigulis, J.

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

Sterenborg, H. J. C. M.

Stergar, J.

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

Taroni, P.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Telenkov, S. A.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Torricelli, A.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Tresp, V.

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Tromberg, B. J.

Valeine, L.

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

Valvano, J. W.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

van der Helm-van Mil, A. H. M.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

van der Voort, M.

van Nies, J. A. B.

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Wang, X.

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Wang, X. D.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
[Crossref]

Wong, B. J. F.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
[Crossref]

Xu, G.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Youn, J.

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Yuan, J.

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

Yuan, Z.

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

Zhang, Q. Z.

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

Ann. Rheum. Dis. (1)

J. A. B. van Nies, A. Krabben, J. W. Schoones, T. W. J. Huizinga, M. Kloppenburg, and A. H. M. van der Helm-van Mil, “What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review,” Ann. Rheum. Dis. 73(5), 861–870 (2014).
[Crossref]

Appl. Opt. (1)

Arthritis Rheum. (1)

A. K. Scheel, A. Krause, I. Mesecke-von Rheinbaben, G. Metzger, H. Rost, V. Tresp, P. Mayer, M. Reuss-Borst, and G. A. Muller, “Assessment of proximal finger joint inflammation in patients with rheumatoid arthritis, using a novel laser-based Imaging technique,” Arthritis Rheum. 46(5), 1177–1184 (2002).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Madsen, E. A. Chu, and B. J. F. Wong, “The Optical Properties of Porcine Nasal Cartilage,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1127–1133 (1999).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

A. Schwaighofer, V. Tresp, P. Mayer, A. Krause, J. Beuthan, H. Rost, G. Metzger, G. A. Muller, and A. K. Scheel, “Classification of rheumatoid joint inflammation based on laser imaging,” IEEE Trans. Biomed. Eng. 50(3), 375–382 (2003).
[Crossref]

Integr. Biol. (1)

D. Chamberland, Y. B. Jiang, and X. D. Wang, “Optical imaging: new tools for arthritis,” Integr. Biol. 2(10), 496–509 (2010).
[Crossref]

J. Biomed. Opt. (8)

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction,” J. Biomed. Opt. 18(7), 076001 (2013).
[Crossref]

L. D. Montejo, J. F. Jia, H. K. Kim, U. J. Netz, S. Blaschke, G. A. Muller, and A. H. Hielscher, “Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 2: image classification,” J. Biomed. Opt. 18(7), 076002 (2013).
[Crossref]

G. L. Lu and B. W. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref]

J. Spigulis and I. Oshina, “Snapshot RGB mapping of skin melanin and hemoglobin,” J. Biomed. Opt. 20(5), 050503 (2015).
[Crossref]

I. Kuzmina, M. Lacis, J. Spigulis, A. Berzina, and L. Valeine, “Study of smartphone suitability for mapping of skin chromophores,” J. Biomed. Opt. 20(9), 090503 (2015).
[Crossref]

D. Lighter, A. Filer, and H. Dehghani, “Detecting inflammation in rheumatoid arthritis using Fourier transform analysis of dorsal optical transmission images from a pilot study,” J. Biomed. Opt. 24(06), 1 (2019).
[Crossref]

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Hyperspectral imaging for detection of arthritis: feasibility and prospects,” J. Biomed. Opt. 20(9), 096011 (2015).
[Crossref]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref]

Lancet (1)

J. S. Smolen, D. Aletaha, and I. B. McInnes, “Rheumatoid arthritis,” Lancet 388(10055), 2023–2038 (2016).
[Crossref]

Lasers Surg. Med. (1)

J. Youn, S. A. Telenkov, E. Kim, N. C. Bhavaraju, B. J. F. Wong, J. W. Valvano, and T. E. Milner, “Optical and Thermal Properties of Nasal Septal Cartilage,” Lasers Surg. Med. 27(2), 119–128 (2000).
[Crossref]

Magn. Reson. Med. (1)

E. Laistler, B. Dymerska, J. Sieg, S. Goluch, R. Frass-Kriegl, A. Kuehne, and E. Moser, “In vivo MRI of the human finger at 7 T,” Magn. Reson. Med. 79(1), 588–592 (2018).
[Crossref]

Med. Phys. (2)

Z. Yuan, Q. Z. Zhang, E. S. Sobel, and H. B. Jiang, “High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments,” Med. Phys. 37(8), 4343–4354 (2010).
[Crossref]

X. Wang, D. L. Chamberland, P. L. Carson, J. B. Fowlkes, R. O. Bude, D. A. Jamadar, and B. J. Roessler, “Imaging of joints with laser-based photoacoustic tomography: an animal study,” Med. Phys. 33(8), 2691–2697 (2006).
[Crossref]

Phys. Med. Biol. (2)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref]

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref]

Proc. SPIE (4)

M. Milanic, L. A. Paluchowski, and L. L. Randeberg, “Simulation of light transport in arthritic- and non-arthritic human fingers,” Proc. SPIE 8936, 893602 (2014).
[Crossref]

J. Jo, G. Xu, A. Marquardt, S. Francis, J. Yuan, D. Girish, G. Girish, and X. D. Wang, “Photoacoustic imaging of inflammatory arthritis in human joints,” Proc. SPIE 9689, 96894H (2016).
[Crossref]

M. Descalle, S. L. Jacques, S. A. Prahl, T. J. Laing, and W. R. Martin, “Measurements of ligament and cartilage optical properties at 351 nm, 365 nm, and in the visible range (440 to 800 nm),” Proc. SPIE 3195, 280–286 (1998).
[Crossref]

R. Dolenec, E. Laistler, J. Stergar, and M. Milanic, “Selection of optimal multispectral imaging system parameters for small joint arthritis detection,” Proc. SPIE 10484, 1048413 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. A schematic drawing of the HSI system used for experimental measurements.
Fig. 2.
Fig. 2. (a) Transverse (at Y = 54.4 mm) and (b) sagittal (at X = 14 mm) cross sections of the healthy finger geometry model used in simulation, with color coding of all the simulated tissues shown.
Fig. 3.
Fig. 3. Sagittal cross sections of the proximal interphalangeal joint region in the inflamed finger geometry models with: (a) synovial membrane thickening, (b) synovial fluid effusion, and (c) synovial fluid effusion and synovial membrane thickening.
Fig. 4.
Fig. 4. Values of optical properties used to simulate unaffected tissues for (a) absorption coefficient, (b) scattering coefficient, (c) refractive index, and (d) anisotropy.
Fig. 5.
Fig. 5. Top down projection of bone thickness distribution with indicated regions over which the values of transmittance were sampled (solid rectangles): distal interphalangeal joint (DIP), middle phalanx (MID) and proximal interphalangeal joint (PIP). Also indicated is the center of the longitudinal transmission profiles (dashed line).
Fig. 6.
Fig. 6. Transmittance image of a healthy human finger at 800 nm.
Fig. 7.
Fig. 7. Transmittance images of the PIP joints analyzed in this study, at 800 nm. Also shown as black squares and dashed lines are the areas where the PIP transmittance spectra and centers of longitudinal profiles were sampled.
Fig. 8.
Fig. 8. The longitudinal transmittance profiles of the PIP joints imaged, for the left (red symbols) and right (blue lines) fingers, shown for wavelength of 800 nm. The position runs from proximal to distal direction of PIP joint, as imaged in Fig. 7.
Fig. 9.
Fig. 9. The transmittance spectra of the PIP joints imaged, for the left (red symbols) and right (blue lines) fingers, sampled over square areas shown in Fig. 7.
Fig. 10.
Fig. 10. All of the measured PIP joint transmittance spectra (lines) compared to the simulated transmittances using the two datasets of the bone optical properties (symbols).
Fig. 11.
Fig. 11. Simulated 800 nm transmittance images for models of (a) healthy finger, (b) synovial membrane thickening, (c) synovial fluid effusion, and (d) synovial fluid effusion and synovial membrane thickening. Also shown as the black squares are the areas where the PIP transmittance spectra were sampled.
Fig. 12.
Fig. 12. Simulation results for longitudinal transmission profiles near the PIP joint at 800 nm, for the four joint models.
Fig. 13.
Fig. 13. Simulation results for (a) transmittance spectra of the four joint models in the PIP region, and (b) the transmittance spectra normalized to the transmittance at 800 nm, showing the most interesting region above 600 nm.
Fig. 14.
Fig. 14. Simulation results for ratios of transmittances sampled in the (a) PIP and MID regions, and (b) PIP and DIP regions. The plots are only shown for wavelengths above 650 nm, since the uncertainties were too large at lower wavelengths with the simulated statistics.

Tables (2)

Tables Icon

Table 1. Parameters used in the calculation of optical tissue properties: blood volume fraction (bvf), O2 saturation (SO2) and water volume fraction (H2O).

Tables Icon

Table 2. Simulated transmittances of the four joint models at observed maxima and minima of the spectra.