Abstract

Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is currently the fastest volumetric imaging technique that is able to generate a single 3-D volume of retina in less than 9 ms, corresponding to a voxel rate of 7.8 GHz. FD-FF-OCT is based on a fast camera, a rapidly tunable laser source, and Fourier-domain signal detection. However, crosstalk appearing due to multiply scattered light corrupts images with the speckle pattern, and therefore, lowers image quality. Here, for the first time, we report on a system that can acquire essentially crosstalk-free volumes of the retina by using a fast deformable membrane. It enables the visualization of choroids and a clear delineation of the retinal layers that is not possible with conventional FD-FF-OCT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo volumetric imaging by crosstalk-free full-field OCT

Patrycjusz Stremplewski, Egidijus Auksorius, Paweł Wnuk, Łukasz Kozoń, Piotr Garstecki, and Maciej Wojtkowski
Optica 6(5) 608-617 (2019)

In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography

Dae Yu Kim, Jeff Fingler, John S. Werner, Daniel M. Schwartz, Scott E. Fraser, and Robert J. Zawadzki
Biomed. Opt. Express 2(6) 1504-1513 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Harms, A. Latrive, and A. C. Boccara, “Time Domain Full Field Optical Coherence Tomography Microscopy,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer International Publishing, 2015), pp. 791–812.
  2. O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
    [Crossref]
  3. R. A. Leitgeb, “En face optical coherence tomography: a technology review [Invited],” Biomed. Opt. Express 10(5), 2177–2201 (2019).
    [Crossref]
  4. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref]
  5. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref]
  6. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
    [Crossref]
  7. A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Opt. Lett. 40(22), 5347–5350 (2015).
    [Crossref]
  8. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [Crossref]
  9. E. Auksorius and A. C. Boccara, “Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera,” J. Biomed. Opt. 22(9), 096002 (2017).
    [Crossref]
  10. V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557–568 (2018).
    [Crossref]
  11. P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
    [Crossref]
  12. J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT,” Biomed. Opt. Express 10(2), 731–746 (2019).
    [Crossref]
  13. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref]
  15. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  16. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
    [Crossref]
  17. A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
    [Crossref]
  18. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  19. Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1549–1574 (2017).
    [Crossref]
  20. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [Crossref]
  21. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography,” J. Opt. Soc. Am. A 22(7), 1380–1388 (2005).
    [Crossref]
  22. P. Stremplewski, E. Auksorius, P. Wnuk, Ł Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
    [Crossref]
  23. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref]
  24. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
    [Crossref]
  25. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006).
    [Crossref]
  26. W. J. Choi, K. S. Park, T. J. Eom, M.-K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett. 37(14), 2784–2786 (2012).
    [Crossref]
  27. A.-H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
    [Crossref]
  28. Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. So, and Z. Yaqoob, “Dynamic speckle illumination wide-field reflection phase microscopy,” Opt. Lett. 39(20), 6062–6065 (2014).
    [Crossref]
  29. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref]
  30. B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
    [Crossref]
  31. I. Sencan, B. K. Huang, Y. Bian, E. Mis, M. K. Khokha, H. Cao, and M. Choma, “Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology,” Biomed. Opt. Express 7(11), 4674–4684 (2016).
    [Crossref]
  32. B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
    [Crossref]
  33. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
    [Crossref]
  34. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref]
  35. H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
    [Crossref]
  36. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27(8), 1812–1817 (2010).
    [Crossref]
  37. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Huettmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
    [Crossref]
  38. D. Hillmann, T. Bonin, C. Luehrs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Huettmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
    [Crossref]
  39. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
    [Crossref]
  40. D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Huettmann, “Off-axis reference beam for full-field swept-source OCT and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
    [Crossref]
  41. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
    [Crossref]
  42. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref]
  43. F. Shevlin, “Phase randomization for spatiotemporal averaging of unwanted interference effects arising from coherence,” Appl. Opt. 57(22), E6–E10 (2018).
    [Crossref]
  44. O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
    [Crossref]
  45. P. Zhang, S. K. Manna, E. B. Miller, Y. Jian, R. K. Meleppat, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “Aperture phase modulation with adaptive optics: a novel approach for speckle reduction and structure extraction in optical coherence tomography,” Biomed. Opt. Express 10(2), 552–570 (2019).
    [Crossref]
  46. S. Liu, M. R. Lamont, J. A. Mulligan, and S. G. Adie, “Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle,” Biomed. Opt. Express 9(10), 4919–4935 (2018).
    [Crossref]
  47. H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Arch. Clin. Exp. Ophthalmol. 252(12), 1871–1883 (2014).
    [Crossref]
  48. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref]
  49. D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.
  50. M. Wojtkowski, B. L. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography,” Opt. Express 17(5), 4189–4207 (2009).
    [Crossref]
  51. O. Carvalho, B. Clairac, M. Benderitter, and L. Roy, “Statistical speckle study to characterize scattering media: use of two complementary approaches,” Opt. Express 15(21), 13817–13831 (2007).
    [Crossref]
  52. C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
    [Crossref]
  53. E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
    [Crossref]
  54. E. Auksorius and A. C. Boccara, “Full-Field Interferential Imaging Systems and Methods,” 20190167109 (2019/06/06/ 2019).
  55. D. Borycki, M. Hamkało, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, “Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography,” Biomed. Opt. Express 10(4), 2032–2054 (2019).
    [Crossref]

2019 (6)

2018 (4)

2017 (5)

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref]

E. Auksorius and A. C. Boccara, “Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera,” J. Biomed. Opt. 22(9), 096002 (2017).
[Crossref]

Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1549–1574 (2017).
[Crossref]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Huettmann, “Off-axis reference beam for full-field swept-source OCT and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
[Crossref]

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

2016 (3)

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

I. Sencan, B. K. Huang, Y. Bian, E. Mis, M. K. Khokha, H. Cao, and M. Choma, “Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology,” Biomed. Opt. Express 7(11), 4674–4684 (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

2015 (4)

2014 (3)

2013 (2)

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

2012 (4)

2011 (1)

2010 (3)

2009 (1)

2007 (2)

2006 (1)

2005 (3)

2004 (3)

2003 (4)

2002 (1)

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]

Adie, S. G.

Allen, G.

Ansari, Z.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Apelian, C.

Aranda, J.

Arthaber, H.

Auksorius, E.

Bashkansky, M.

Beaurepaire, E.

Benderitter, M.

Bian, Y.

Bittner, S.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Boccara, A. C.

P. Xiao, V. Mazlin, K. Grieve, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT,” Optica 5(4), 409–412 (2018).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557–568 (2018).
[Crossref]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref]

E. Auksorius and A. C. Boccara, “Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera,” J. Biomed. Opt. 22(9), 096002 (2017).
[Crossref]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
[Crossref]

F. Harms, A. Latrive, and A. C. Boccara, “Time Domain Full Field Optical Coherence Tomography Microscopy,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer International Publishing, 2015), pp. 791–812.

E. Auksorius and A. C. Boccara, “Full-Field Interferential Imaging Systems and Methods,” 20190167109 (2019/06/06/ 2019).

Boccara, C.

Bonin, T.

Boppart, S. A.

Borycki, D.

Bouma, B. E.

Bourquin, S.

Bromberg, Y.

Bukowska, D.

Cao, H.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

I. Sencan, B. K. Huang, Y. Bian, E. Mis, M. K. Khokha, H. Cao, and M. Choma, “Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology,” Biomed. Opt. Express 7(11), 4674–4684 (2016).
[Crossref]

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
[Crossref]

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Carney, P. S.

Carvalho, O.

Cense, B.

Cerjan, A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

Chassot, J.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

Choi, W.

Choi, W. J.

Choi, Y.

Choma, M.

Choma, M. A.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]

Chriki, R.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Chu, S.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Clairac, B.

Coron, E.

Dalimier, E.

Dasari, R. R.

Davidson, N.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

de Boer, J. F.

de La Zerda, A.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Delori, F. C.

Dhalla, A.-H.

Drexler, W.

Dubois, A.

Dufresne, E. R.

Duker, J. S.

Dunsby, C.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Dutta, R.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Eom, T. J.

Eubank, W.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Federici, A.

Fercher, A. F.

Fink, M.

Franke, G.

French, P.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Friesem, A. A.

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Fujimoto, J. G.

Garstecki, P.

Goldstein, A. M.

Gora, M.

Gorczynska, I.

Grajciar, B.

Grieve, K.

Groux, K.

Gu, Y.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Hagen-Eggert, M.

Hain, C.

Hamkalo, M.

Harms, F.

F. Harms, A. Latrive, and A. C. Boccara, “Time Domain Full Field Optical Coherence Tomography Microscopy,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer International Publishing, 2015), pp. 791–812.

Haynor, D. R.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Hermann, B.

Hillmann, D.

Hinkel, L.

Hitzenberger, C. K.

Hosseini, P.

Huang, B. K.

Huang, X.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

Huettmann, G.

Hüttmann, G.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref]

Irsch, K.

Izatt, J. A.

Jian, Y.

Kaluzny, J.

Karamata, B.

Katagiri, B.

Kawakami, T.

Kazlauskas, A.

Khokha, M. K.

Ko, T. H.

Koch, P.

Kowalczyk, A.

Kozon, L

Kuratomi, Y.

Lambelet, P.

Lamont, M. R.

Lasser, T.

Latrive, A.

F. Harms, A. Latrive, and A. C. Boccara, “Time Domain Full Field Optical Coherence Tomography Microscopy,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer International Publishing, 2015), pp. 791–812.

Laubscher, M.

Laviers, H.

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Arch. Clin. Exp. Ophthalmol. 252(12), 1871–1883 (2014).
[Crossref]

Lecaque, R.

Lee, B. H.

Lee, K. J.

Lee, M. L.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

Leutenegger, M.

Lew, M. D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Lewellyn, T. K.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Liba, O.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Liu, L.

Liu, S.

Liu, Y.-Z.

Luehrs, C.

Manna, S. K.

Mattes, D.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Mazlin, V.

Meleppat, R. K.

Melloch, M.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Migacz, J. V.

Miller, E. B.

Mis, E.

Moneron, G.

Moshfeghi, D. M.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Motiejunaite, R.

Mulligan, J. A.

Nahas, A.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

Nguyen, T.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

Nolte, D.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Nowakowski, M.

Oh, M.-K.

Park, B. H.

Park, K. S.

Peng, L.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Pfaeffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

Pfäffle, C.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref]

Pierce, M. C.

Pieretti, A.

Pircher, M.

Povazay, B.

Pugh, E. N.

Redding, B.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
[Crossref]

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Reintjes, J.

Roy, L.

Sahel, J.-A.

Sarunic, M. V.

Satoh, H.

Sattmann, H.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]

Scholler, J.

Sekiya, K.

Sen, D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Sencan, I.

Shevlin, F.

Sikorski, B. L.

Sliney, D. H.

So, P. T.

SoRelle, E. D.

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

South, F. A.

Spahr, H.

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Huettmann, “Off-axis reference beam for full-field swept-source OCT and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
[Crossref]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref]

Srinivasan, V. J.

Stone, A. D.

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

Stremplewski, P.

Sudkamp, H.

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Huettmann, “Off-axis reference beam for full-field swept-source OCT and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref]

Suzuki, Y.

Szkulmowski, M.

Tanter, M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

Tearney, G. J.

Thouvenin, O.

Tomiyama, T.

Uchida, T.

Unterhuber, A.

Vabre, L.

Vesselle, H.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Webb, R. H.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

Wnuk, P.

Wojtkowski, M.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]

Xiao, P.

Xu, Y.

Yang, C. H.

Yang, T. D.

Yaqoob, Z.

Yu, P.

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]

Zambarakji, H.

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Arch. Clin. Exp. Ophthalmol. 252(12), 1871–1883 (2014).
[Crossref]

Zawadzki, R. J.

Zhang, P.

Appl. Opt. (4)

Biomed. Opt. Express (10)

P. Zhang, S. K. Manna, E. B. Miller, Y. Jian, R. K. Meleppat, M. V. Sarunic, E. N. Pugh, and R. J. Zawadzki, “Aperture phase modulation with adaptive optics: a novel approach for speckle reduction and structure extraction in optical coherence tomography,” Biomed. Opt. Express 10(2), 552–570 (2019).
[Crossref]

S. Liu, M. R. Lamont, J. A. Mulligan, and S. G. Adie, “Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle,” Biomed. Opt. Express 9(10), 4919–4935 (2018).
[Crossref]

D. Borycki, M. Hamkało, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, “Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography,” Biomed. Opt. Express 10(4), 2032–2054 (2019).
[Crossref]

I. Sencan, B. K. Huang, Y. Bian, E. Mis, M. K. Khokha, H. Cao, and M. Choma, “Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology,” Biomed. Opt. Express 7(11), 4674–4684 (2016).
[Crossref]

Y.-Z. Liu, F. A. South, Y. Xu, P. S. Carney, and S. A. Boppart, “Computational optical coherence tomography [Invited],” Biomed. Opt. Express 8(3), 1549–1574 (2017).
[Crossref]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref]

O. Thouvenin, K. Grieve, P. Xiao, C. Apelian, and A. C. Boccara, “En face coherence microscopy [Invited],” Biomed. Opt. Express 8(2), 622–639 (2017).
[Crossref]

R. A. Leitgeb, “En face optical coherence tomography: a technology review [Invited],” Biomed. Opt. Express 10(5), 2177–2201 (2019).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557–568 (2018).
[Crossref]

J. Scholler, V. Mazlin, O. Thouvenin, K. Groux, P. Xiao, J.-A. Sahel, M. Fink, C. Boccara, and K. Grieve, “Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT,” Biomed. Opt. Express 10(2), 731–746 (2019).
[Crossref]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

H. Laviers and H. Zambarakji, “Enhanced depth imaging-OCT of the choroid: a review of the current literature,” Graefe’s Arch. Clin. Exp. Ophthalmol. 252(12), 1871–1883 (2014).
[Crossref]

J. Biomed. Opt. (4)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. C. Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[Crossref]

E. Auksorius and A. C. Boccara, “Fast subsurface fingerprint imaging with full-field optical coherence tomography system equipped with a silicon camera,” J. Biomed. Opt. 22(9), 096002 (2017).
[Crossref]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]

J. Opt. Soc. Am. A (4)

Nat. Commun. (1)

O. Liba, M. D. Lew, E. D. SoRelle, R. Dutta, D. Sen, D. M. Moshfeghi, S. Chu, and A. de La Zerda, “Speckle-modulating optical coherence tomography in living mice and humans,” Nat. Commun. 8(1), 15845 (2017).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Nat. Rev. Phys. (1)

H. Cao, R. Chriki, S. Bittner, A. A. Friesem, and N. Davidson, “Complex lasers with controllable coherence,” Nat. Rev. Phys. 1(2), 156–168 (2019).
[Crossref]

Opt. Commun. (1)

C. Dunsby, Y. Gu, Z. Ansari, P. French, L. Peng, P. Yu, M. Melloch, and D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[Crossref]

Opt. Express (9)

M. Wojtkowski, B. L. Sikorski, I. Gorczynska, M. Gora, M. Szkulmowski, D. Bukowska, J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography,” Opt. Express 17(5), 4189–4207 (2009).
[Crossref]

O. Carvalho, B. Clairac, M. Benderitter, and L. Roy, “Statistical speckle study to characterize scattering media: use of two complementary approaches,” Opt. Express 15(21), 13817–13831 (2007).
[Crossref]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref]

D. Hillmann, T. Bonin, C. Luehrs, G. Franke, M. Hagen-Eggert, P. Koch, and G. Huettmann, “Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT,” Opt. Express 20(6), 6761–6776 (2012).
[Crossref]

D. Hillmann, H. Spahr, H. Sudkamp, C. Hain, L. Hinkel, G. Franke, and G. Huettmann, “Off-axis reference beam for full-field swept-source OCT and holoscopy,” Opt. Express 25(22), 27770–27784 (2017).
[Crossref]

B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006).
[Crossref]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref]

Opt. Lett. (11)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref]

A. Federici and A. Dubois, “Full-field optical coherence microscopy with optimized ultrahigh spatial resolution,” Opt. Lett. 40(22), 5347–5350 (2015).
[Crossref]

W. J. Choi, K. S. Park, T. J. Eom, M.-K. Oh, and B. H. Lee, “Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography,” Opt. Lett. 37(14), 2784–2786 (2012).
[Crossref]

A.-H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35(13), 2305–2307 (2010).
[Crossref]

Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. So, and Z. Yaqoob, “Dynamic speckle illumination wide-field reflection phase microscopy,” Opt. Lett. 39(20), 6062–6065 (2014).
[Crossref]

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref]

B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014).
[Crossref]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Huettmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35(20), 3432–3434 (2010).
[Crossref]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
[Crossref]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40(20), 4771–4774 (2015).
[Crossref]

E. Auksorius and A. C. Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref]

Optica (2)

Proc. Natl. Acad. Sci. (2)

B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, “Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging,” Proc. Natl. Acad. Sci. 112(5), 1304–1309 (2015).
[Crossref]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. 113(46), 13138–13143 (2016).
[Crossref]

Sci. Rep. (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfaeffle, C. Winter, and G. Huettmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref]

Other (3)

F. Harms, A. Latrive, and A. C. Boccara, “Time Domain Full Field Optical Coherence Tomography Microscopy,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and G. J. Fujimoto, eds. (Springer International Publishing, 2015), pp. 791–812.

E. Auksorius and A. C. Boccara, “Full-Field Interferential Imaging Systems and Methods,” 20190167109 (2019/06/06/ 2019).

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, Nonrigid Multimodality Image Registration, Medical Imaging 2001 (SPIE, 2001), Vol. 4322.

Supplementary Material (6)

NameDescription
» Visualization 1       Movie showing DM modulated fringe patterns
» Visualization 2       Video showing fly-through 3-D retinal FD-FF-OCT data in XY-plane.
» Visualization 3       3-D rendering of the Retina reconstructed from cross-talk free FD-FF-OCT data
» Visualization 4       Video showing the volumetric registration efficiency.
» Visualization 5       Video showing the efficiency of the speckle averaging.
» Visualization 6       Video showing fly through 3-D FD-FF-OCT data in XZ plane.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Crosstalk-free Fourier-domain full-field OCT system for in vivo retinal imaging of the human eye. L1-L7 – achromatic doublet lenses; M1-M4 – mirrors; DM – deformable membrane; ND –neutral density filter; P’ – plane conjugate to the pupil plane; S’ – plane conjugate to the sample plane and also to DM plane. Lenses L3, L4, and L6 are mounted on the translation stage, TS. Lens L5 is not mounted on TS. Red beam shows spatially coherent beam (when DM is OFF) and green beam depicts a spatially incoherent case (when DM is ON). To simplify the diagram, no scattered light from the retina is shown in the detection path – only specular reflections in the coherent as well as the incoherent cases. One can also see that a beam is no longer focused to a spot in the P’ plane when DM is ON.
Fig. 2.
Fig. 2. Subsystem of Fig. 1 showing light propagation in the 3-lens system when DM is ON in (a) normal and (b) hyperopic eye. The beam path shows light that originate from a single coherence volume in the center of DM, which is shown in Fig. 1 and is conjugate to S’ here. To compensate for the refractive error $\varDelta$z in (b), the three lenses need to be moved by $\varDelta$z to the left. Light coming out of the 3-lens system is collimated in (a) and (b), and thus, will be focused to a spot on the camera by the tube lens L7 in Fig. 1.
Fig. 3.
Fig. 3. OCT images of a resolution target (a) in-focus, (b) defocused by 760 µm, (c) re-focused back with the 3-lens system and (d) re-focused back with the tube lens. (e) OCT signal as a function of defocus correction with the 3-lens system (red) and the tube lens (blue curve with circles). The FWHM value of the ‘tube lens’ curve was measured to be 1.36 mm.
Fig. 4.
Fig. 4. Demonstration of the Spatial Coherence Gating (SCG) effect by imaging a mirror at different defocus values (0–2 mm) with Linnik interferometer. Newton rings are formed due to the different focal lengths of objective lenses in both arms. The integration time was 0.15 µs for (a)-(e) and 16 µs for (f)-(j). The upper part of the DM was inactive (mirror) and therefore always produces round rings (of varying radius) despite sample mirror being defocused. The SCG effect in the active part of DM manifests itself through fringe visibility attenuation with the defocusing. Visualization 1 - movie shows other DM patterns for (c) case – acquired with 0.15 µs integration time at 60 kHz and 1 mm defocus.
Fig. 5.
Fig. 5. A diagram illustrating the signal processing applied to consecutive volumes. For each pixel position (x, y), the acquired spectral fringe patterns (lines along ω) are corrected for the DC level, resampled, zero-padded, and Fourier transformed (first row). The resulting data is then phase-corrected to compensate for the chromatic dispersion and possible axial motion during the laser sweep (second row). Finally, the en face planes are spatially filtered using the annulus mask to suppress the background noise (third row).
Fig. 6.
Fig. 6. Improving image quality by subpixel 3D registration (top) and correction of illumination artifacts caused by the out-of-focus deformable membrane (bottom). Processed volumes were aligned with the subpixel accuracy and then averaged to improve the SNR (first row). Subsequently, each en face plane was divided by the corrector, which was obtained by integrating the volume along the z-direction.
Fig. 7.
Fig. 7. Crosstalk removal enables visualization of otherwise invisible sample features in lens tissue. Both images show ten averaged magnitudes of the arbitrarily selected en face layers of the sample. Yellow and red rectangles denote the region of interests (ROIs) used for quantifying crosstalk noise.
Fig. 8.
Fig. 8. Comparison of B-scan images acquired with FD-FF-OCT system in the crosstalk-free mode and conventional mode, where DM was set in ON and OFF states, respectively (top-left). Scanning confocal FD-OCT image (top-right) is also shown for comparison purposes that was extracted from a larger scanning area shown bottom-right. Fluorescein angiography image (bottom-left) of the same eye shows the imaging location (yellow square).
Fig. 9.
Fig. 9. En face projections of inner (a) and outer (b) retinal layers with (DM ON) and without (DM OFF) crosstalk removal. B-scan images are shown on the right with the axial color and sign indications of where the en face images were derived from. Visualization 2 – video showing fly-through in (en face) XY-plane.
Fig. 10.
Fig. 10. 3D cutaway view (Visualization 3) of the human retina acquired in vivo with crosstalk eliminated by phase randomization with deformable membrane.
Fig. 11.
Fig. 11. Comparative analysis of speckle size and contrast in FD-OCT and FD-FF-OCT images. (a) - (c) Typical B-scans obtained from non-averaged acquisitions. (d) B-scan obtained from averaged 24 FD-FF-OCT volumes. Images are represented in the normalized linear scale. (e) – (h) Zoomed-in (by 2.5 times) images taken from the regions marked with white dashed rectangles in (a) – (d) images. (i) – (k) Autocovariance functions calculated for the axial and transverse dimensions in (e) – (g) images that were used to determine the speckle size. (l) A graph showing speckle contrast as a function of the number of averaged volumes when DM was ON (green curve with crisscrosses) and DM OFF (red curve with circles). Also shown speckle contrast calculated for each volume (blue curve with dots). Theoretical speckle contrast curve is also presented (red line) as a function of the number of fully decorrelated speckle patterns. Visualization 4 – video showing the registration efficiency, Visualization 5 – video showing the speckle averaging.
Fig. 12.
Fig. 12. Averaging of 6 consecutive FD-FF-OCT B-scans in: (a) a single volume acquired with DM OFF. (b) a single volume acquired with DM ON and (c) an averaged volume obtained by averaging 24 volumes with DM ON. All data are represented in linear greyscale. Visualization 6 - video showing fly through in XZ plane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C I ( x , z ) = F 1 { | F [ I ( x , z ) ] | 2 } I ( x , z ) 2 I 2 ( x , z ) I ( x , z ) 2 ,