Abstract

One of the major challenges during polarimetric determination of glucose concentration is the spectral superposition with other optically active molecules, especially proteins like albumin. Since each of those substances has a characteristic optical rotatory dispersion (ORD), we developed a broadband polarimeter setup to distinguish between glucose and albumin. A partial least squares (PLS) regression with $5$ components was applied to the polarimeter signal in the wavelength range of $380-680 \,{\textrm{nm}}$. To verify the efficacy of the proposed method, different glucose levels of $0-500 \,{\textrm{mg/dl}}$ were spiked with varying albumin concentrations up to $1000 \,{\textrm{mg/dl}}$. A standard error of prediction of $\pm 16.0 \,{\textrm{mg/dl}}$ was achieved compared to $\pm 128.3 \,{\textrm{mg/dl}}$ using a two-wavelength system with $532 \,{\textrm{nm}}$ and $635 \,{\textrm{nm}}$ under the same conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time compensation method for robust polarimetric determination of glucose in turbid media

Christian Stark, Reza Behroozian, Benjamin Redmer, Felix Fiedler, and Stefan Müller
Biomed. Opt. Express 10(1) 308-321 (2019)

Determination of glucose concentration in a scattering medium based on selected wavelengths by use of an overtone absorption band

Gilwon Yoon, Airat K. Amerov, Kye Jin Jeon, and Yoen-Joo Kim
Appl. Opt. 41(7) 1469-1475 (2002)

Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter

Chien Chou, Chien-Yuan Han, Wen-Chuan Kuo, Yeu-Chuen Huang, Ching-Mei Feng, and Jenn-Chyang Shyu
Appl. Opt. 37(16) 3553-3557 (1998)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Chan, “Global Report on Diabetes,” Tech. rep., World Health Organization, ISBN 978 92 4 156525 7 (2016).
  2. American Diabetes Asssociation, “American Diagnosis and Classification of Diabetes Mellitus,” Diabetes Care 33(Supplement_1), S62–S69 (2010).
    [Crossref]
  3. R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
    [Crossref]
  4. K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” J. Biomed. Eng. 29(4), 449–458 (2007).
    [Crossref]
  5. D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
    [Crossref]
  6. M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
    [Crossref]
  7. C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
    [Crossref]
  8. S. Liakat, K. A. Bors, T.-Y. Huang, A. P. M. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express 4(7), 1083 (2013).
    [Crossref]
  9. M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
    [Crossref]
  10. S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Biomed. Opt. Express 5(1), 275 (2014).
    [Crossref]
  11. K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
    [Crossref]
  12. P. S. Jensen and J. Bak, “Near-infrared transmission spectroscopy of aqueous solutions: Influence of optical pathlength on signal-to-noise ratio,” Appl. Spectrosc. 56(12), 1600–1606 (2002).
    [Crossref]
  13. D. LaFrance, “Near infrared determination of lactate in biological fluids and tissues,” Ph.D. thesis, McGill University (2003).
  14. M. Ren and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and raman spectra,” Anal. Bioanal. Chem. 387(3), 879–888 (2007).
    [Crossref]
  15. J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
    [Crossref]
  16. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, vol. 2 of 5–16 (Springer-Verlag Berlin Heidelberg, 2006).
  17. B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
    [Crossref]
  18. M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
    [Crossref]
  19. B. D. Cameron, J. S. Baba, and G. L. Cote, “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” in “Optical Diagnostics of Biological Fluids V,”, vol. 66A. V. Priezzhev and T. Asakura, eds. (SPIE, 2000) vol. 66, pp. 66–77.
  20. B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
    [Crossref]
  21. C. Chou, C.-Y. Han, W.-C. Kuo, Y.-C. Huang, C.-M. Feng, and J.-C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37(16), 3553–3557 (1998).
    [Crossref]
  22. G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
    [Crossref]
  23. B. D. Cameron, “The Application of Polarized Light to Biomedical Diagnostics,” Ph.D. thesis, Texas A&M University Texas (2000).
  24. M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).
  25. B. W. Clarke and B. D. Cameron, “The development of an integrated faraday modulator and compensator for continuous polarimetric glucose monitoring,” in “Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics,” vol. 8591G. L. Coté, ed. (SPIE, 2013), pp. 1–11.
  26. T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
    [Crossref]
  27. C. Stark, R. Behroozian, B. Redmer, F. Fiedler, and S. Müller, “Real-time compensation method for robust polarimetric determination of glucose in turbid media,” Biomed. Opt. Express 10(1), 308 (2019).
    [Crossref]
  28. G. Cote and R. Ansari, “A noninvasive glucose sensor based on polarimetric measurements through the aqueous humor of the eye,” in “Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues,” Valery V. Tuchin, ed. (Taylor & Francis, 2008), chap. 15, pp. 457–485.
  29. B. Jirgensons, “Optical Rotatory Dispersion of Proteins and Other Macromolecules,” Science 168, 962 (1969).
    [Crossref]
  30. B. H. Malik, C. W. Pirnstill, and G. L. Cote, “Polarimetric glucose sensing in an artificial eye anterior chamber,” in “Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV,” R. J. Nordstrom and G. L. Cote, eds. (SPIE, 2012).
  31. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and faraday effect of ceramic terbium gallium garnet for a room temperature faraday rotator,” Opt. Express 19(16), 15181 (2011).
    [Crossref]
  32. M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
    [Crossref]
  33. B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
    [Crossref]
  34. C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
    [Crossref]

2019 (1)

2014 (1)

2013 (3)

S. Liakat, K. A. Bors, T.-Y. Huang, A. P. M. Michel, E. Zanghi, and C. F. Gmachl, “In vitro measurements of physiological glucose concentrations in biological fluids using mid-infrared light,” Biomed. Opt. Express 4(7), 1083 (2013).
[Crossref]

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
[Crossref]

2012 (1)

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

2011 (3)

H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and faraday effect of ceramic terbium gallium garnet for a room temperature faraday rotator,” Opt. Express 19(16), 15181 (2011).
[Crossref]

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
[Crossref]

2010 (1)

American Diabetes Asssociation, “American Diagnosis and Classification of Diabetes Mellitus,” Diabetes Care 33(Supplement_1), S62–S69 (2010).
[Crossref]

2008 (1)

M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
[Crossref]

2007 (3)

M. Ren and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and raman spectra,” Anal. Bioanal. Chem. 387(3), 879–888 (2007).
[Crossref]

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” J. Biomed. Eng. 29(4), 449–458 (2007).
[Crossref]

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
[Crossref]

2005 (1)

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

2002 (2)

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

P. S. Jensen and J. Bak, “Near-infrared transmission spectroscopy of aqueous solutions: Influence of optical pathlength on signal-to-noise ratio,” Appl. Spectrosc. 56(12), 1600–1606 (2002).
[Crossref]

2001 (1)

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]

2000 (1)

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

1998 (2)

K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
[Crossref]

C. Chou, C.-Y. Han, W.-C. Kuo, Y.-C. Huang, C.-M. Feng, and J.-C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37(16), 3553–3557 (1998).
[Crossref]

1997 (2)

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

1994 (1)

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

1969 (1)

B. Jirgensons, “Optical Rotatory Dispersion of Proteins and Other Macromolecules,” Science 168, 962 (1969).
[Crossref]

Altrogge, D. M.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
[Crossref]

Altucci, C.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Ansari, R.

G. Cote and R. Ansari, “A noninvasive glucose sensor based on polarimetric measurements through the aqueous humor of the eye,” in “Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues,” Valery V. Tuchin, ed. (Taylor & Francis, 2008), chap. 15, pp. 457–485.

Arnold, M. A.

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
[Crossref]

M. Ren and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and raman spectra,” Anal. Bioanal. Chem. 387(3), 879–888 (2007).
[Crossref]

K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
[Crossref]

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Baba, J. S.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Cote, “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” in “Optical Diagnostics of Biological Fluids V,”, vol. 66A. V. Priezzhev and T. Asakura, eds. (SPIE, 2000) vol. 66, pp. 66–77.

Bak, J.

Behroozian, R.

Bors, K. A.

Brandstetter, M.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Cameron, B. D.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
[Crossref]

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Cote, “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” in “Optical Diagnostics of Biological Fluids V,”, vol. 66A. V. Priezzhev and T. Asakura, eds. (SPIE, 2000) vol. 66, pp. 66–77.

B. D. Cameron, “The Application of Polarized Light to Biomedical Diagnostics,” Ph.D. thesis, Texas A&M University Texas (2000).

B. W. Clarke and B. D. Cameron, “The development of an integrated faraday modulator and compensator for continuous polarimetric glucose monitoring,” in “Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics,” vol. 8591G. L. Coté, ed. (SPIE, 2013), pp. 1–11.

Cazorla, G.

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Chan, D. M.

D. M. Chan, “Global Report on Diabetes,” Tech. rep., World Health Organization, ISBN 978 92 4 156525 7 (2016).

Chong, H.

Chou, C.

Clarke, B. W.

B. W. Clarke and B. D. Cameron, “The development of an integrated faraday modulator and compensator for continuous polarimetric glucose monitoring,” in “Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics,” vol. 8591G. L. Coté, ed. (SPIE, 2013), pp. 1–11.

Cote, D.

M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
[Crossref]

Cote, G.

G. Cote and R. Ansari, “A noninvasive glucose sensor based on polarimetric measurements through the aqueous humor of the eye,” in “Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues,” Valery V. Tuchin, ed. (Taylor & Francis, 2008), chap. 15, pp. 457–485.

Cote, G. L.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

B. H. Malik, C. W. Pirnstill, and G. L. Cote, “Polarimetric glucose sensing in an artificial eye anterior chamber,” in “Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV,” R. J. Nordstrom and G. L. Cote, eds. (SPIE, 2012).

B. D. Cameron, J. S. Baba, and G. L. Cote, “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” in “Optical Diagnostics of Biological Fluids V,”, vol. 66A. V. Priezzhev and T. Asakura, eds. (SPIE, 2000) vol. 66, pp. 66–77.

Coté, G. L.

B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
[Crossref]

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]

Déléris, G.

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Esposito, R.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Feng, C.-M.

Fiedler, F.

Fujimoto, Y.

Fujita, H.

Genner, A.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Gerber, K.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Ghazalah, R.

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

Gmachl, C. F.

Gresham, V. C.

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

Han, C.-Y.

Hazen, K. H.

K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
[Crossref]

Huang, T.-Y.

Huang, Y.-C.

Jensen, P. S.

Jirgensons, B.

B. Jirgensons, “Optical Rotatory Dispersion of Proteins and Other Macromolecules,” Science 168, 962 (1969).
[Crossref]

Jungbauer, C.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Kiefer, W.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

King, T. W.

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

Kinoshita, H.

Kocherscheidt, G.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Köhler, W.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Kuo, W.-C.

LaFrance, D.

D. LaFrance, “Near infrared determination of lactate in biological fluids and tissues,” Ph.D. thesis, McGill University (2003).

Lendl, B.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Lepore, M.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Li, D.

Liakat, S.

Liu, L.

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
[Crossref]

Malik, B. H.

B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
[Crossref]

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

B. H. Malik, C. W. Pirnstill, and G. L. Cote, “Polarimetric glucose sensing in an artificial eye anterior chamber,” in “Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV,” R. J. Nordstrom and G. L. Cote, eds. (SPIE, 2012).

Marcel J. Goetz, J.

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

McNichols, R. J.

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

Melin, A.-M.

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Michel, A. P. M.

Mikami, K.

Mita, D. G.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Miyanaga, N.

Möcks, J.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Müller, S.

Murhammer, D. W.

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Nagata, Y.

Nicola, S. D.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Nozawa, H.

Olesberg, J. T.

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
[Crossref]

Pawluczyk, R.

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

Perromat, A.

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Petibois, C.

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Petrich, W.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Pirnstill, C. W.

B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
[Crossref]

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

B. H. Malik, C. W. Pirnstill, and G. L. Cote, “Polarimetric glucose sensing in an artificial eye anterior chamber,” in “Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV,” R. J. Nordstrom and G. L. Cote, eds. (SPIE, 2012).

Poetzschke, H.

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” J. Biomed. Eng. 29(4), 449–458 (2007).
[Crossref]

Purvinis, G.

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
[Crossref]

Redmer, B.

Ren, M.

M. Ren and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and raman spectra,” Anal. Bioanal. Chem. 387(3), 879–888 (2007).
[Crossref]

Rhiel, M.

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Riley, M. R.

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Rohani, A.

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

Rohleder, D.

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

Shyu, J.-C.

Small, G. W.

K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
[Crossref]

Stark, C.

Sun, C.

Theru, S.

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

Tsubakimoto, K.

Tuchin, V. V.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, vol. 2 of 5–16 (Springer-Verlag Berlin Heidelberg, 2006).

Velotta, R.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Ventura, B. D.

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Vitkin, I. A.

M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
[Crossref]

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

Volgger, L.

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Wang, L.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, vol. 2 of 5–16 (Springer-Verlag Berlin Heidelberg, 2006).

Wood, M. F. G.

M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
[Crossref]

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

Xu, K.

Yagi, H.

Yanagitani, T.

Yoshida, H.

Yu, H.

Yu, S.

Zanghi, E.

Zhou, X.

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Zimnyakov, D. A.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, vol. 2 of 5–16 (Springer-Verlag Berlin Heidelberg, 2006).

Zirk, K.

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” J. Biomed. Eng. 29(4), 449–458 (2007).
[Crossref]

Anal. Bioanal. Chem. (1)

M. Ren and M. A. Arnold, “Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and raman spectra,” Anal. Bioanal. Chem. 387(3), 879–888 (2007).
[Crossref]

Anal. Chim. Acta (1)

K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy,” Anal. Chim. Acta 371(2-3), 255–267 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, and B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor,” Appl. Phys. B: Lasers Opt. 110(2), 233–239 (2013).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (3)

Biotechnol. Bioeng. (1)

M. R. Riley, M. Rhiel, X. Zhou, M. A. Arnold, and D. W. Murhammer, “Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy,” Biotechnol. Bioeng. 55(1), 11–15 (1997).
[Crossref]

Diabetes Care (1)

American Diabetes Asssociation, “American Diagnosis and Classification of Diabetes Mellitus,” Diabetes Care 33(Supplement_1), S62–S69 (2010).
[Crossref]

Diabetes Technol. Ther. (2)

C. W. Pirnstill, B. H. Malik, V. C. Gresham, and G. L. Coté, “In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion,” Diabetes Technol. Ther. 14(9), 819–827 (2012).
[Crossref]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

B. D. Cameron and G. L. Cote, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[Crossref]

J. Biomed. Eng. (1)

K. Zirk and H. Poetzschke, “A refractometry-based glucose analysis of body fluids,” J. Biomed. Eng. 29(4), 449–458 (2007).
[Crossref]

J. Biomed. Opt. (4)

D. Rohleder, G. Kocherscheidt, K. Gerber, W. Kiefer, W. Köhler, J. Möcks, and W. Petrich, “Comparison of mid-infrared and raman spectroscopy in the quantitative analysis of serum,” J. Biomed. Opt. 10(3), 031108 (2005).
[Crossref]

M. F. G. Wood, D. Cote, and I. A. Vitkin, “Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media,” J. Biomed. Opt. 13(4), 044037 (2008).
[Crossref]

J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye,” J. Biomed. Opt. 7(3), 321 (2002).
[Crossref]

B. H. Malik, C. W. Pirnstill, and G. L. Coté, “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” J. Biomed. Opt. 18(1), 017007 (2013).
[Crossref]

J. Diabetes Sci. Technol. (2)

G. Purvinis, B. D. Cameron, and D. M. Altrogge, “Noninvasive polarimetric-based glucose monitoring: An in vivo study,” J. Diabetes Sci. Technol. 5(2), 380–387 (2011).
[Crossref]

M. A. Arnold, L. Liu, and J. T. Olesberg, “Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors,” J. Diabetes Sci. Technol. 1(4), 454–462 (2007).
[Crossref]

J. Lab. Clin. Med. (1)

C. Petibois, A.-M. Melin, A. Perromat, G. Cazorla, and G. Déléris, “Glucose and lactate concentration determination on single microsamples by fourier-transform infrared spectroscopy,” J. Lab. Clin. Med. 135(2), 210–215 (2000).
[Crossref]

Opt. Eng. (1)

T. W. King, G. L. Cote, R. J. McNichols, and J. Marcel J. Goetz, “Multispectral polarimetric glucose detection using a single pockels cell,” Opt. Eng. 33(8), 2746 (1994).
[Crossref]

Opt. Express (1)

Science (1)

B. Jirgensons, “Optical Rotatory Dispersion of Proteins and Other Macromolecules,” Science 168, 962 (1969).
[Crossref]

Sensors (1)

R. Esposito, B. D. Ventura, S. D. Nicola, C. Altucci, R. Velotta, D. G. Mita, and M. Lepore, “Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase,” Sensors 11(4), 3483–3497 (2011).
[Crossref]

Other (9)

D. M. Chan, “Global Report on Diabetes,” Tech. rep., World Health Organization, ISBN 978 92 4 156525 7 (2016).

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications, vol. 2 of 5–16 (Springer-Verlag Berlin Heidelberg, 2006).

B. D. Cameron, J. S. Baba, and G. L. Cote, “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” in “Optical Diagnostics of Biological Fluids V,”, vol. 66A. V. Priezzhev and T. Asakura, eds. (SPIE, 2000) vol. 66, pp. 66–77.

D. LaFrance, “Near infrared determination of lactate in biological fluids and tissues,” Ph.D. thesis, McGill University (2003).

B. H. Malik, C. W. Pirnstill, and G. L. Cote, “Polarimetric glucose sensing in an artificial eye anterior chamber,” in “Optical Diagnostics and Sensing XII: Toward Point-of-Care Diagnostics and Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue IV,” R. J. Nordstrom and G. L. Cote, eds. (SPIE, 2012).

G. Cote and R. Ansari, “A noninvasive glucose sensor based on polarimetric measurements through the aqueous humor of the eye,” in “Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues,” Valery V. Tuchin, ed. (Taylor & Francis, 2008), chap. 15, pp. 457–485.

B. D. Cameron, “The Application of Polarized Light to Biomedical Diagnostics,” Ph.D. thesis, Texas A&M University Texas (2000).

M. F. G. Wood, A. Rohani, R. Ghazalah, I. A. Vitkin, and R. Pawluczyk, “Multivariate analysis methods for spectroscopic blood analysis,” in “Biomedical Vibrational Spectroscopy V: Advances in Research and Industry,”, vol. 8219A. Mahadevan-Jansen and W. Petrich, eds. (SPIE, 2012).

B. W. Clarke and B. D. Cameron, “The development of an integrated faraday modulator and compensator for continuous polarimetric glucose monitoring,” in “Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics,” vol. 8591G. L. Coté, ed. (SPIE, 2013), pp. 1–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (left) ORD of common blood components glucose, albumin, globulin and fibrinogen [18]. (right) Ratio of ORD for proteins referenced to glucose. The spectral differences between glucose and proteins become larger the closer the measurement approaches the UV located absorption center wavelength.
Fig. 2.
Fig. 2. Measurement setup: (1) Light source, (2) First polarizer, (3) Faraday rotator, (4) Sample cell, (5) Second Polarizer, (6) Spectrometer, (7) Data processing.
Fig. 3.
Fig. 3. Prediction of glucose within the range of $0-500 \,\textrm{mg/dl}$ in the absence of albumin with PLS regression. (left) using $532 \,\textrm{nm}$ and $635 \,\textrm{nm}$, (right) using broadband spectra between $380-680 \,\textrm{nm}$ with $5$ components.
Fig. 4.
Fig. 4. Raw $\frac {I(\omega )}{I(2\omega )}$ signal for the glucose and albumin matrix from measurement #2. (left) for $532 \,\textrm{nm}$ and $635 \,\textrm{nm}$, (right) for $380-680 \,\textrm{nm}$.
Fig. 5.
Fig. 5. Glucose prediction in the range of $0-500 \,\textrm{mg/dl}$ randomly mixed with albumin in the range $0-1000 \,\textrm{mg/dl}$. (left) The dual-wavelength data analysis at $532 \,\textrm{nm}$ and $635 \,\textrm{nm}$ (right) Results of the broadband analysis.

Tables (3)

Tables Icon

Table 1. Coefficient $A$ defining strength and direction of rotation and center wavelength $\lambda _c$ for the most prevalent blood proteins and glucose [18,24].

Tables Icon

Table 2. Overview of performed measurements. Each glucose level was measured 6 times for calculation of standard deviations within measurement $\#1$. For $\#2$, each glucose concentration was combined with a different albumin level resulting in a 6x6 matrix. Each of these cases was measured 3 times.

Tables Icon

Table 3. Standard error of prediction (SEP) and regression coefficient $\mathrm {R^2}$ of measurement #2 from the acquired data set for the extracted laser wavelengths 532 nm and 635 nm as well as for the broadband range.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ α ] λ , p H T = A λ 2 λ c 2
Φ = [ α ] λ , p H T c l
I ( t ) E 2 ( t ) = [ ( Θ m 2 2 + Φ 2 ) I ( D C ) + 2 Θ m Φ sin ( ω t ) I ( ω ) Θ m 2 2 cos ( 2 ω t ) I ( 2 ω ) ] E 0 2 T
I ( ω ) I ( 2 ω ) 2 Φ Θ m Θ m 2 2 E 0 2 T E 0 2 T = 4 Φ Θ m

Metrics