Abstract

Corneal elasticity can resist elastic deformations under intraocular pressure to maintain normal corneal shape, which has a great influence on corneal refractive function. Elastography can measure tissue elasticity and provide a powerful tool for clinical diagnosis. Air-coupled ultrasound optical coherence elastography (OCE) has been used in the quantification of ex-vivo corneal elasticity. However, in-vivo imaging of the cornea remains a challenge. The 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm was developed to distinguish the in-vivo cornea vibration from the axial eye motion in anesthetized rabbits and visualize the elastic wave propagation clearly. The elastic wave group velocity of in-vivo rabbit cornea was measured to be 5.96 ± 0.55 m/s, which agrees with other studies. The results show the potential of 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm for quantitative in-vivo assessment of corneal elasticity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noncontact depth-resolved micro-scale optical coherence elastography of the cornea

Shang Wang and Kirill V. Larin
Biomed. Opt. Express 5(11) 3807-3821 (2014)

Ultra-fast line-field low coherence holographic elastography using spatial phase shifting

Chih-Hao Liu, Alexander Schill, Raksha Raghunathan, Chen Wu, Manmohan Singh, Zhaolong Han, Achuth Nair, and Kirill V. Larin
Biomed. Opt. Express 8(2) 993-1004 (2017)

Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography

Antoine Ramier, Behrouz Tavakol, and Seok-Hyun Yun
Opt. Express 27(12) 16635-16649 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refractive Surg. 37(3), 588–598 (2011).
    [Crossref]
  2. J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
    [Crossref]
  3. C. J. Roberts and W. J. Dupps, “Biomechanics of corneal ectasia and biomechanical treatments,” J. Cataract Refractive Surg. 40(6), 991–998 (2014).
    [Crossref]
  4. A. Murueta-Goyena and P. Canadas, “Visual outcomes and management after corneal refractive surgery: A review,” Journal of Optometry 11(2), 121–129 (2018).
    [Crossref]
  5. M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
    [Crossref]
  6. G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
    [Crossref]
  7. F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
    [Crossref]
  8. H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
    [Crossref]
  9. S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
    [Crossref]
  10. J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
    [Crossref]
  11. R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
    [Crossref]
  12. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
    [Crossref]
  13. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics. 8(4), 279–302 (2015).
    [Crossref]
  14. J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
    [Crossref]
  15. D. P. Pinero and N. Alcon, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98(2), 107–116 (2015).
    [Crossref]
  16. M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
    [Crossref]
  17. L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
    [Crossref]
  18. M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
    [Crossref]
  19. J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
    [Crossref]
  20. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
    [Crossref]
  21. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
    [Crossref]
  22. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
    [Crossref]
  23. J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
    [Crossref]
  24. J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
    [Crossref]
  25. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
    [Crossref]
  26. L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
    [Crossref]
  27. Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
    [Crossref]
  28. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
    [Crossref]
  29. S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9(11), 5280–5295 (2018).
    [Crossref]
  30. T. E. Gomez Alvarez-Arenas, “Acoustic impedance matching of piezoelectric transducers to the air,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(5), 624–633 (2004).
    [Crossref]
  31. T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
    [Crossref]
  32. S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
    [Crossref]
  33. T. G. Alvarez-Arenas and L. Diez, “Ultrasonic Single Element and Sectorized Array Transducers with Omnidirectional 2D Field Distribution for Non-Contact Human-Machine Interface and Echo-Location,” Elektron. Elektrotech. 23(4), 51–55 (2017).
    [Crossref]
  34. R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
    [Crossref]
  35. G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
    [Crossref]
  36. A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
    [Crossref]
  37. M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
    [Crossref]
  38. P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
    [Crossref]
  39. Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
    [Crossref]
  40. Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
    [Crossref]
  41. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
    [Crossref]
  42. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
    [Crossref]
  43. K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
    [Crossref]
  44. K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
    [Crossref]
  45. A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
    [Crossref]
  46. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref]
  47. J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
    [Crossref]
  48. T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
    [Crossref]
  49. T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
    [Crossref]
  50. I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
    [Crossref]
  51. R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
    [Crossref]
  52. D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
    [Crossref]
  53. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
    [Crossref]

2019 (2)

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

2018 (9)

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
[Crossref]

S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9(11), 5280–5295 (2018).
[Crossref]

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

A. Murueta-Goyena and P. Canadas, “Visual outcomes and management after corneal refractive surgery: A review,” Journal of Optometry 11(2), 121–129 (2018).
[Crossref]

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

2017 (5)

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

T. G. Alvarez-Arenas and L. Diez, “Ultrasonic Single Element and Sectorized Array Transducers with Omnidirectional 2D Field Distribution for Non-Contact Human-Machine Interface and Echo-Location,” Elektron. Elektrotech. 23(4), 51–55 (2017).
[Crossref]

A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

2016 (6)

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

2015 (6)

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

D. P. Pinero and N. Alcon, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98(2), 107–116 (2015).
[Crossref]

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics. 8(4), 279–302 (2015).
[Crossref]

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

2014 (8)

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref]

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

C. J. Roberts and W. J. Dupps, “Biomechanics of corneal ectasia and biomechanical treatments,” J. Cataract Refractive Surg. 40(6), 991–998 (2014).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

2013 (2)

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

2012 (3)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

2011 (4)

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref]

D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refractive Surg. 37(3), 588–598 (2011).
[Crossref]

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

2009 (1)

2008 (2)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref]

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

2004 (3)

S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
[Crossref]

T. E. Gomez Alvarez-Arenas, “Acoustic impedance matching of piezoelectric transducers to the air,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(5), 624–633 (2004).
[Crossref]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
[Crossref]

2003 (1)

G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
[Crossref]

1985 (1)

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Aglyamov, S.

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Aglyamov, S. R.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

Albarracin, J. C.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Alcon, N.

D. P. Pinero and N. Alcon, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98(2), 107–116 (2015).
[Crossref]

Alvarez-Arenas, T. E.

S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
[Crossref]

Alvarez-Arenas, T. G.

T. G. Alvarez-Arenas and L. Diez, “Ultrasonic Single Element and Sectorized Array Transducers with Omnidirectional 2D Field Distribution for Non-Contact Human-Machine Interface and Echo-Location,” Elektron. Elektrotech. 23(4), 51–55 (2017).
[Crossref]

Amanzadeh, K.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Ambrozinski, L.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Angmo, D.

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

Arnal, B.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Asgari, S.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Aubry, J. F.

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Baghaie, A.

A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
[Crossref]

Bahrmandy, H.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Beaton, S.

Bercoff, J.

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Birdsong, O. C.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Cable, A.

Camacho, J.

T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
[Crossref]

Canadas, P.

A. Murueta-Goyena and P. Canadas, “Visual outcomes and management after corneal refractive surgery: A review,” Journal of Optometry 11(2), 121–129 (2018).
[Crossref]

Carolina, A. C.

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

Chen, R.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

Chen, S.

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Chen, Y.

Chen, Z.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
[Crossref]

S. Moon and Z. Chen, “Phase-stability optimization of swept-source optical coherence tomography,” Biomed. Opt. Express 9(11), 5280–5295 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
[Crossref]

Chou, L.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

D’Souza, R. M.

A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
[Crossref]

Dada, T.

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

Dai, C.

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

de Kinkelder, R.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

DelMonte, D. W.

D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refractive Surg. 37(3), 588–598 (2011).
[Crossref]

Desautels, J. D.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Diez, L.

T. G. Alvarez-Arenas and L. Diez, “Ultrasonic Single Element and Sectorized Array Transducers with Omnidirectional 2D Field Distribution for Non-Contact Human-Machine Interface and Echo-Location,” Elektron. Elektrotech. 23(4), 51–55 (2017).
[Crossref]

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
[Crossref]

Du, Y.

Duncan, W.

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Duong, T. Q.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Dupps, W. J.

C. J. Roberts and W. J. Dupps, “Biomechanics of corneal ectasia and biomechanical treatments,” J. Cataract Refractive Surg. 40(6), 991–998 (2014).
[Crossref]

Edelhauser, H. F.

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Emelianov, S.

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Enikov, E.

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Faber, D. J.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Ferguson, R. D.

Fink, M.

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Fotouhi, A.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Fritsch, C.

T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
[Crossref]

Fujimoto, J. G.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref]

Gao, L.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Gao, Y.

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

Gennisson, J. L.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Geroski, D. H.

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Gomez Alvarez-Arenas, T. E.

T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
[Crossref]

T. E. Gomez Alvarez-Arenas, “Acoustic impedance matching of piezoelectric transducers to the air,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(5), 624–633 (2004).
[Crossref]

Gorczynska, I.

Greenleaf, J. F.

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Hafezi, F.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Hammer, D. X.

Han, Z.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

Hashemi, H.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Hayward, G.

S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
[Crossref]

He, X.

He, Y.

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
[Crossref]

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

Heidarian, S.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Hoopes, P. C.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Hoyer, A.

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

Huang, S.

Huang, Z.

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Huo, T.

Izatt, J. A.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

James, F. G.

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

Jhanji, V.

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

Jiang, J.

Kalkman, J.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Kelly, S. P.

S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
[Crossref]

Kim, M.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Kim, T.

D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refractive Surg. 37(3), 588–598 (2011).
[Crossref]

Kim, T. W.

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

Kirby, M. A.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

Kok, P. H.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Larin, K. V.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics. 8(4), 279–302 (2015).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Le, N.

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

Lee, J. W.

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

Li, C.

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

Li, D.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Li, J.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Li, R.

Li, Y.

Lim, G.

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Linn, S. H.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Liu, C. H.

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

Liu, G.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

Lloyd, H. O.

R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
[Crossref]

Ma, J.

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

Ma, T.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

Manapuram, R. K.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Manduca, A.

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Matsuda, M.

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Matthew, W. U.

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

McCafferty, S.

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Menodiado, F. M.

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Miao, Y.

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

Minckler, D. S.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

Miraftab, M.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Moon, S.

Moshirfar, M.

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Murueta-Goyena, A.

A. Murueta-Goyena and P. Canadas, “Visual outcomes and management after corneal refractive surgery: A review,” Journal of Optometry 11(2), 121–129 (2018).
[Crossref]

Nabi, G.

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

Nagaoka, T.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Nair, G.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Nguyen, T. M.

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Nguyen, T.-M.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Nikbin, H.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

O’Donnell, M.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Olson, D. E.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Pardue, M. T.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Park, S. J.

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
[Crossref]

Paunescu, L. A.

Pelivanov, I.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Pillunat, L. E.

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

Pinero, D. P.

D. P. Pinero and N. Alcon, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98(2), 107–116 (2015).
[Crossref]

Pitre, J.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

Potsaid, B.

Qi, L.

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

Qi, W.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

Qu, Y.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

Raghunathan, R.

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Raiskup-Wolf, F.

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

Ramaswamy, D.

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

Rao, B.

Roberts, C. J.

C. J. Roberts and W. J. Dupps, “Biomechanics of corneal ectasia and biomechanical treatments,” J. Cataract Refractive Surg. 40(6), 991–998 (2014).
[Crossref]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
[Crossref]

Saidi, A.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

Schraa, O.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Schuman, J. S.

Schwiegerling, J.

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Seller, T.

G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
[Crossref]

Seyedian, M. A.

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Shen, T. T.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Shin, J.

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

Shung, K. K.

Sihota, R.

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

Silverman, R. H.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
[Crossref]

Singh, M.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Song, P.

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Song, S.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Spoerl, E.

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
[Crossref]

Srinivasan, V. J.

Standish, B.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref]

Sun, C.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref]

Tanter, M.

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Thule, P. M.

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Touboul, D.

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

Tuchin, V. V.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Twa, M.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Twa, M. D.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Urban, M. W.

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Urs, R.

R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
[Crossref]

van Leeuwen, T. G.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Vantipalli, S.

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Verbraak, F. D.

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

Wang, R. K.

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Wang, S.

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics. 8(4), 279–302 (2015).
[Crossref]

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

Wang, Y.

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

Wei, P.

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

Wollensak, G.

G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
[Crossref]

Wong, E. Y.

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Wu, C.

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

Xin, Y.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

Yang, Q.

Yang, V. X.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref]

Yee, R. W.

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Yoon, M.

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

Yoon, S. J.

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Yu, J.

Yu, L.

Yu, Z.

A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
[Crossref]

Zhang, J.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
[Crossref]

Zhao, H.

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Zhou, K.

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

Zhou, Q.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

Zhou, Y.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

Zhu, J.

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

J. Zhu, J. Yu, Y. Qu, Y. He, Y. Li, Q. Yang, T. Huo, X. He, and Z. Chen, “Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography,” Opt. Lett. 43(10), 2388–2391 (2018).
[Crossref]

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref]

Am. J. Ophthalmol. (2)

G. Wollensak, E. Spoerl, and T. Seller, “Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol. 135(5), 620–627 (2003).
[Crossref]

H. Hashemi, M. Miraftab, M. A. Seyedian, F. Hafezi, H. Bahrmandy, S. Heidarian, K. Amanzadeh, H. Nikbin, A. Fotouhi, and S. Asgari, “Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/c2) for the Treatment of Progressive Keratoconus,” Am. J. Ophthalmol. 160(6), 1164–1170.e1 (2015).
[Crossref]

Appl. Phys. Lett. (1)

L. Ambrozinski, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109(4), 043701 (2016).
[Crossref]

Biomed. Opt. Express (2)

Clin. Exp. Optom. (1)

D. P. Pinero and N. Alcon, “Corneal biomechanics: a review,” Clin. Exp. Optom. 98(2), 107–116 (2015).
[Crossref]

Clin. Ophthalmol. (1)

M. Moshirfar, J. C. Albarracin, J. D. Desautels, O. C. Birdsong, S. H. Linn, and P. C. Hoopes, “Ectasia following small-incision lenticule extraction (SMILE): a review of the literature,” Clin. Ophthalmol. 11, 1683–1688 (2017).
[Crossref]

Doc. Ophthalmol. (1)

G. Nair, M. Kim, T. Nagaoka, D. E. Olson, P. M. Thule, M. T. Pardue, and T. Q. Duong, “Effects of common anesthetics on eye movement and electroretinogram,” Doc. Ophthalmol. 122(3), 163–176 (2011).
[Crossref]

Elektron. Elektrotech. (1)

T. G. Alvarez-Arenas and L. Diez, “Ultrasonic Single Element and Sectorized Array Transducers with Omnidirectional 2D Field Distribution for Non-Contact Human-Machine Interface and Echo-Location,” Elektron. Elektrotech. 23(4), 51–55 (2017).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

T. E. Gomez Alvarez-Arenas, “Acoustic impedance matching of piezoelectric transducers to the air,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(5), 624–633 (2004).
[Crossref]

A. C. Carolina, S. Chen, W. U. Matthew, and F. G. James, “Acoustic Radiation Force Induced Creep-Recovery (ARFICR) A non-invasive method to characterize tissue viscoelasticity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 3–13 (2018).
[Crossref]

S. P. Kelly, G. Hayward, and T. E. Alvarez-Arenas, “Characterization and assessment of an integrated matching layer for air-coupled ultrasonic applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1314–1323 (2004).
[Crossref]

Indian J. Ophthalmol. (1)

R. Sihota, D. Angmo, D. Ramaswamy, and T. Dada, “Simplifying “target” intraocular pressure for different stages of primary open-angle glaucoma and primary angle-closure glaucoma,” Indian J. Ophthalmol. 66(4), 495–505 (2018).
[Crossref]

Invest. Ophthalmol. Visual Sci. (5)

R. de Kinkelder, J. Kalkman, D. J. Faber, O. Schraa, P. H. Kok, F. D. Verbraak, and T. G. van Leeuwen, “Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina,” Invest. Ophthalmol. Visual Sci. 52(6), 3908–3913 (2011).
[Crossref]

M. Singh, J. Li, Z. Han, S. Vantipalli, C. H. Liu, C. Wu, R. Raghunathan, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 57(9), OCT112 (2016).
[Crossref]

Y. Qu, Y. He, A. Saidi, Y. Xin, Y. Zhou, J. Zhu, T. Ma, R. H. Silverman, D. S. Minckler, Q. Zhou, and Z. Chen, “in-vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography,” Invest. Ophthalmol. Visual Sci. 59(1), 455–461 (2018).
[Crossref]

T. M. Nguyen, J. F. Aubry, D. Touboul, M. Fink, J. L. Gennisson, J. Bercoff, and M. Tanter, “Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,” Invest. Ophthalmol. Visual Sci. 53(9), 5948–5954 (2012).
[Crossref]

T. M. Nguyen, J. F. Aubry, M. Fink, J. Bercoff, and M. Tanter, “in-vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging,” Invest. Ophthalmol. Visual Sci. 55(11), 7545–7552 (2014).
[Crossref]

J. Biomed. Opt. (6)

I. Pelivanov, L. Gao, J. Pitre, M. A. Kirby, S. Song, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Does group velocity always reflect elastic modulus in shear wave elastography?” J. Biomed. Opt. 24(07), 1 (2019).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C. h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation,” J. Biomed. Opt. 20(2), 020501 (2015).
[Crossref]

J. Li, S. Wang, R. K. Manapuram, M. Singh, F. M. Menodiado, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in-vivo,” J. Biomed. Opt. 18(12), 121503 (2013).
[Crossref]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt. 16(4), 043001 (2011).
[Crossref]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt. 17(11), 110505 (2012).
[Crossref]

M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22(12), 1–28 (2017).
[Crossref]

J. Biophotonics (2)

K. Zhou, N. Le, Z. Huang, and C. Li, “High-intensity-focused ultrasound and phase-sensitive optical coherence tomography for high resolution surface acoustic wave elastography,” J. Biophotonics 11(2), e201700051 (2018).
[Crossref]

K. Zhou, C. Li, S. Chen, G. Nabi, and Z. Huang, “Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms,” J. Biophotonics 12(1), e201800177 (2019).
[Crossref]

J. Biophotonics. (1)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics. 8(4), 279–302 (2015).
[Crossref]

J. Cataract Refractive Surg. (4)

F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” J. Cataract Refractive Surg. 34(5), 796–801 (2008).
[Crossref]

D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J. Cataract Refractive Surg. 37(3), 588–598 (2011).
[Crossref]

C. J. Roberts and W. J. Dupps, “Biomechanics of corneal ectasia and biomechanical treatments,” J. Cataract Refractive Surg. 40(6), 991–998 (2014).
[Crossref]

M. Singh, Z. Han, J. Li, S. Vantipalli, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography,” J. Cataract Refractive Surg. 44(8), 1023–1031 (2018).
[Crossref]

J. Glaucoma (1)

J. Shin, T. W. Kim, S. J. Park, M. Yoon, and J. W. Lee, “Changes in biomechanical properties of the cornea and intraocular pressure after myopic laser in situ keratomileusis using a femtosecond laser for flap creation determined using ocular response analyzer and Goldmann applanation tonometry,” J. Glaucoma 24(3), 195–201 (2015).
[Crossref]

J. Mech. Behav. Biomed. Mater. (1)

Z. Han, J. Li, M. Singh, C. Wu, C. H. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

J. Med. Ultrasound (1)

R. Urs, H. O. Lloyd, and R. H. Silverman, “Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy,” J. Med. Ultrasound 33(8), 1417–1426 (2014).
[Crossref]

Journal of Optometry (1)

A. Murueta-Goyena and P. Canadas, “Visual outcomes and management after corneal refractive surgery: A review,” Journal of Optometry 11(2), 121–129 (2018).
[Crossref]

Laser Phys. Lett. (2)

J. Li, S. Wang, M. Singh, S. Aglyamov, S. Emelianov, M. D. Twa, and K. V. Larin, “Air-pulse OCE for assessment of age-related changes in mouse cornea in-vivo,” Laser Phys. Lett. 11(6), 065601 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10(7), 075605 (2013).
[Crossref]

Med. Image Anal. (1)

A. Baghaie, Z. Yu, and R. M. D’Souza, “Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?” Med. Image Anal. 37, 129–145 (2017).
[Crossref]

Ophthalmology (1)

D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, “Pump Function of the Human Corneal Endothelium: Effects of Age and Cornea Guttata,” Ophthalmology 92(6), 759–763 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Med. Biol. (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Corrigendum: Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 57(16), 5359–5360 (2012).
[Crossref]

Proc. SPIE (1)

J. A. Izatt, J. G. Fujimoto, V. V. Tuchin, S. Song, Z. Huang, T.-M. Nguyen, E. Y. Wong, B. Arnal, M. O’Donnell, and R. K. Wang, “Shear wave elastography using phase sensitive optical coherence tomography,” Proc. SPIE 8934, 89340U (2014).
[Crossref]

Sci. Rep. (2)

J. Zhu, L. Qi, Y. Miao, T. Ma, C. Dai, Y. Qu, Y. He, Y. Gao, Q. Zhou, and Z. Chen, “3D mapping of elastic modulus using shear wave optical micro-elastography,” Sci. Rep. 6(1), 35499 (2016).
[Crossref]

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Surv. Ophthalmol. (1)

J. Ma, Y. Wang, P. Wei, and V. Jhanji, “Biomechanics and structure of the cornea: implications and association with corneal disorders,” Surv. Ophthalmol. 63(6), 851–861 (2018).
[Crossref]

Trans. Vis. Sci. Tech. (1)

S. McCafferty, G. Lim, W. Duncan, E. Enikov, and J. Schwiegerling, “Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface,” Trans. Vis. Sci. Tech. 5(5), 4–5 (2016).
[Crossref]

Ultrasonics (1)

T. E. Gomez Alvarez-Arenas, J. Camacho, and C. Fritsch, “Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers,” Ultrasonics 67, 85–93 (2016).
[Crossref]

Ultrasound Med. Biol. (1)

P. Song, A. Manduca, H. Zhao, M. W. Urban, J. F. Greenleaf, and S. Chen, “Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering,” Ultrasound Med. Biol. 40(6), 1343–1355 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. System setup for in-vivo studies. (a) Schematic diagram of system. (b) Photo of the setup with the rabbit eye on the stage. (c) 3D OCT image of cornea in-vivo. (d) OCT M-B scan images of cornea in-vivo.
Fig. 2.
Fig. 2. Doppler phase images of the cornea before and after axial motion artifacts correction using different T values. The left column, except for the first row, represents the value of T. The sampling interval between images is 0.2 ms.
Fig. 3.
Fig. 3. 3D visualization of elastic wave propagation in the 0.3% (a) and 0.7% (b) homogeneous agar phantoms. The bottom of the right images shows the time after the excitation of the air-coupled ultrasound transducer. The series time instants of the 3D transient Doppler phase visualizes 3D transverse elastic wave propagation from left to right in homogeneous agar phantoms.
Fig. 4.
Fig. 4. Spatial-temporal Doppler phase images in the 0.3% (a-c) and 0.7% (d-f) homogeneous agar phantoms. (a, d) 3D spatial-temporal Doppler phase images; 2D spatial-temporal Doppler phase image along the fast (b, e), and slow (c, f) scan direction, respectively; (b) and (e) are profile cuts of the volume in (a) and (d) when y is ∼2.0 mm. (c) and (f) are profile cuts of the volume in (a) and (d) when x is ∼2.0 mm. The elastic wave velocity is calculated by the slope of the white dotted arrow.
Fig. 5.
Fig. 5. 3D visualization of elastic wave propagation in the rabbit cornea in-vivo. The bottom of the right images shows the time after the excitation of the air-coupled ultrasound transducer.
Fig. 6.
Fig. 6. Spatial-temporal Doppler phase images in the rabbit cornea in-vivo. (a) 3D spatial-temporal Doppler phase images; 2D spatial-temporal Doppler phase image along the fast (b) and slow (c) scan direction, respectively. The elastic wave velocity is calculated by the slope of the white dotted arrow.
Fig. 7.
Fig. 7. Results of rabbit corneas using the Lamb wave model. (a) The wavenumber-frequency domain map. The main frequency of the elastic wave is marked as a green star. (b) The average phase velocity dispersion curve of four rabbit corneas with the standard deviation shaded regions.

Tables (2)

Tables Icon

Table 1. Summary of the Elastic Wave Velocity Obtained in Different Concentrations of Agar Phantoms

Tables Icon

Table 2. Summary of the Elastic Wave Velocity Obtained in Four Rabbit Corneas

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( z ) = tan 1 ( Im [ z m = z z + M j = 1 N I j ( z m ) I j + D e l a y ( z m ) ] Re [ z m = z z + M j = 1 N I j ( z m ) I j + D e l a y ( z m ) ] )
I 0 ( F , t ) = I e l a s t i c ( F , t ) + I e y e ( F , t )
Δ I 0 ( F , t ) = I 0 ( F , t ) I 0 ( F , t + T ) .
Δ I 0 ( F , t ) = I e l a s t i c ( F , t ) + I e y e ( F , t ) I e l a s t i c ( F , t + T ) I e y e ( F , t + T ) .
I e y e ( F , t ) I e y e ( F , t + T ) = 0.
Δ I 0 ( F , t ) = I e l a s t i c ( F , t ) I e l a s t i c ( F , t + T ) .
V e l a s t i c = V x V y V x 2 + V y 2 .
D = t 1 t 2 λ 0 Δ ϕ 4 π n τ d t ,
C p = ω k ,