Abstract

The optical attenuation coefficient (OAC) estimated using optical coherence tomography (OAC-OCT) offers a label-free 3D mapping of tissue infarction, but the physiological origin of the OAC contrast remains unclear. For effectively suppressing OAC fluctuations, we propose a hybrid (wavelength/angle) division multiplexing (HDM) method, which improved the OAC contrast by 70.7% in tissue phantoms. To test the feasibility of OAC-based infarction detection, triphenyltetrazolium chloride (TTC) staining was performed on fresh ex vivo brain slices, and the TTC-defined infarction was used as the ground truth. Sharp OAC contrast was observed between the TTC-defined infarction (1.09 mm−1) and normal tissue (0.79 mm−1). The OAC infarction spatially matched well with the TTC-defined infarction. To further explore the physiological origin of OAC contrast in ischemic stroke at the cellular level, the dynamic changes in OAC were measured in the rat cortex in vivo over 3 weeks after photothrombosis (PT) occlusion and found significantly correlated with the changes in astrocytes and neurons acquired with ex vivo hematoxylin and eosin (HE), glial fibrillary acidic protein (GFAP), and NeuN staining. These results suggest that OAC imaging enables non-invasive infarction detection and its contrast might originate from the changes in astrocytes and neurons in the chronic PT stroke model. The cellular responses revealed by in vivo OAC imaging would be essential for evaluating treatments and even developing novel therapies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography

Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and Hao F. Zhang
Biomed. Opt. Express 7(9) 3377-3389 (2016)

Longitudinal deep-brain imaging in mouse using visible-light optical coherence tomography through chronic microprism cranial window

Lisa Beckmann, Xian Zhang, Neil A. Nadkarni, Zhen Cai, Ayush Batra, David P. Sullivan, William A. Muller, Cheng Sun, Roman Kuranov, and Hao F. Zhang
Biomed. Opt. Express 10(10) 5235-5250 (2019)

In vivo tissue injury mapping using optical coherence tomography based methods

Utku Baran, Yuandong Li, and Ruikang K. Wang
Appl. Opt. 54(21) 6448-6453 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Stapf and J. P. Mohr, “Ischemic Stroke Therapy,” Annu. Rev. Med. 53(1), 453–475 (2002).
    [Crossref]
  2. V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
    [Crossref]
  3. U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
    [Crossref]
  4. Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
    [Crossref]
  5. W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
    [Crossref]
  6. S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
    [Crossref]
  7. J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
    [Crossref]
  8. L. Thrane, M. H. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Andersen, “Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures,” Opt. Lett. 29(14), 1641–1643 (2004).
    [Crossref]
  9. D. J. Faber, F. J. V. D. Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353 (2004).
    [Crossref]
  10. C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
    [Crossref]
  11. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
    [Crossref]
  12. K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref]
  13. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).
  14. R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
    [Crossref]
  15. K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
    [Crossref]
  16. F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.
  17. J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
    [Crossref]
  18. J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx 3(4), 466–473 (2006).
    [Crossref]
  19. J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
    [Crossref]
  20. H. Wang, C. Magnain, S. Sakadžić, B. Fischl, and D. A. Boas, “Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography,” Biomed. Opt. Express 8(12), 5617–5636 (2017).
    [Crossref]
  21. P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
    [Crossref]
  22. P. Li, Y. Cheng, L. Zhou, C. Pan, Z. Ding, and P. Li, “Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement,” Opt. Lett. 41(5), 1058–1061 (2016).
    [Crossref]
  23. L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
    [Crossref]
  24. F. Zhang and J. Chen, “Infarct Measurement in Focal Cerebral Ischemia: TTC Staining,” in Animal Models of Acute Neurological Injuries II: Injury and Mechanistic Assessments, Volume 2, J. Chen, X.-M. Xu, Z. C. Xu, and J. H. Zhang, eds. (Humana Press, Totowa, NJ, 2012), pp. 93–98.
  25. W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
    [Crossref]
  26. S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
    [Crossref]
  27. J. Defelipe, “The evolution of the brain, the human nature of cortical circuits, and intellectual creativity,” Front. Neuroanat. 5, 29 (2011).
    [Crossref]
  28. D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
    [Crossref]
  29. A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res. 45(3), 528–537 (2000).
    [Crossref]
  30. H. Lu and X. Lei, “The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury,” Neural Regener. Res. 9(9), 973–977 (2014).
    [Crossref]
  31. E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
    [Crossref]
  32. P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
    [Crossref]
  33. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
    [Crossref]
  34. H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
    [Crossref]
  35. A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
    [Crossref]
  36. C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
    [Crossref]

2019 (6)

W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
[Crossref]

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

2018 (1)

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (2)

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref]

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

2014 (5)

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

H. Lu and X. Lei, “The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury,” Neural Regener. Res. 9(9), 973–977 (2014).
[Crossref]

2013 (2)

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
[Crossref]

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

2011 (2)

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

J. Defelipe, “The evolution of the brain, the human nature of cortical circuits, and intellectual creativity,” Front. Neuroanat. 5, 29 (2011).
[Crossref]

2010 (1)

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

2008 (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

2006 (1)

J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx 3(4), 466–473 (2006).
[Crossref]

2004 (2)

2002 (1)

C. Stapf and J. P. Mohr, “Ischemic Stroke Therapy,” Annu. Rev. Med. 53(1), 453–475 (2002).
[Crossref]

2001 (2)

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

2000 (1)

A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res. 45(3), 528–537 (2000).
[Crossref]

1999 (1)

Aalders, M. C. G.

D. J. Faber, F. J. V. D. Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353 (2004).
[Crossref]

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Aguilar, M.-I.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Alexandrov, A. V.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Andersen, P. E.

Ayata, C.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Baran, U.

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref]

Binder, D. K.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Blasi, F.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Boas, D. A.

Broughton, B. R. S.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Burgin, W. S.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Cai, Q.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Campbell, M.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Can, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

Chaichana, K. L.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Chen, J.

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx 3(4), 466–473 (2006).
[Crossref]

F. Zhang and J. Chen, “Infarct Measurement in Focal Cerebral Ischemia: TTC Staining,” in Animal Models of Acute Neurological Injuries II: Injury and Mechanistic Assessments, Volume 2, J. Chen, X.-M. Xu, Z. C. Xu, and J. H. Zhang, eds. (Humana Press, Totowa, NJ, 2012), pp. 93–98.

Chen, R.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Cheng, Y.

Choi, W. J.

W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
[Crossref]

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

Chopp, M.

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx 3(4), 466–473 (2006).
[Crossref]

Climov, M.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Craik, R. L.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Croul, S. E.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Daneshmand, A.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

de Boer, J. F.

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).

Defelipe, J.

J. Defelipe, “The evolution of the brain, the human nature of cortical circuits, and intellectual creativity,” Front. Neuroanat. 5, 29 (2011).
[Crossref]

Del Borgo, M. P.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Ding, H.

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

Ding, N.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Ding, S.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Ding, Z.

Drezek, R.

Dunn, A.

Eberle, M. M.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Eikermann-Haerter, K.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

El-Mitwalli, A.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Faber, D. J.

D. J. Faber, F. J. V. D. Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353 (2004).
[Crossref]

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Fischl, B.

Forsythe, J. S.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Frosz, M. H.

Fu, Y.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Fukazawa, Y.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Furutachi, S.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Gao, H.

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

Gelikonov, G. V.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Gladkova, N. D.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Gotoh, Y.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Greenberg, J. H.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Grotta, J. C.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Gu, Y.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Habenicht, L. M.

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

Hand, P. J.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Hoffman, J. R.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Hong, A.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Hsu, M. S.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Huang, L.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Jing, B.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Jorgensen, T. M.

Kafieh, R.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
[Crossref]

Katsuyama, Y.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Kawaguchi, D.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Kermani, S.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
[Crossref]

Kiseleva, E. B.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Korzhimanova, Y. V.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Kut, C.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Lanjakornsiripan, D.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Lee, J. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Leeuwen, T. G. V.

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Lei, X.

H. Lu and X. Lei, “The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury,” Neural Regener. Res. 9(9), 973–977 (2014).
[Crossref]

Lemij, H. G.

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).

Li, D.

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

Li, H.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Li, P.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

P. Li, Y. Cheng, L. Zhou, C. Pan, Z. Ding, and P. Li, “Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement,” Opt. Lett. 41(5), 1058–1061 (2016).
[Crossref]

P. Li, Y. Cheng, L. Zhou, C. Pan, Z. Ding, and P. Li, “Single-shot angular compounded optical coherence tomography angiography by splitting full-space B-scan modulation spectrum for flow contrast enhancement,” Opt. Lett. 41(5), 1058–1061 (2016).
[Crossref]

P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
[Crossref]

P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
[Crossref]

P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
[Crossref]

P. Li, Y. Cheng, P. Li, L. Zhou, Z. Ding, Y. Ni, and C. Pan, “Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography,” Opt. Lett. 41(17), 3944–3947 (2016).
[Crossref]

Li, Q. Z.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Li, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Li, Y.

W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
[Crossref]

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref]

Lin, H.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Liu, F.

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

Liu, J.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Liu, K.

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

Lo, E. H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Long, M.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Lu, H.

H. Lu and X. Lei, “The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury,” Neural Regener. Res. 9(9), 973–977 (2014).
[Crossref]

Luan, J.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Luo, S.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Ma, L.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Ma, Z.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Magnain, C.

Malkoff, M.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Mandeville, E. T.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

McVeigh, E. R.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Meer, F. J. V. D.

D. J. Faber, F. J. V. D. Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353 (2004).
[Crossref]

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Mo, J.

Mohr, J. P.

C. Stapf and J. P. Mohr, “Ischemic Stroke Therapy,” Annu. Rev. Med. 53(1), 453–475 (2002).
[Crossref]

Moiseev, A. A.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Morgenstern, L. B.

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Ni, Y.

Pan, C.

Park, B. H.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Perree, J.

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Pior, B. J.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Pulkki, K.

A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res. 45(3), 528–537 (2000).
[Crossref]

Qin, K.

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

Qin, W.

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

Qiu, H.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Quiñones-Hinojosa, A.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Rabbani, H.

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
[Crossref]

Radhakrishnan, H.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Raza, S. M.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Reivich, M.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Richards-Kortum, R.

Rodriguez, C. L.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Rodriguez, F. J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Sakadzic, S.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Sakadžic, S.

Saraste, A.

A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res. 45(3), 528–537 (2000).
[Crossref]

Sassoon, D. M. B.

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

Shui, Q. Y.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Sobey, C. G.

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

Srinivasan, V. J.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Stapf, C.

C. Stapf and J. P. Mohr, “Ischemic Stroke Therapy,” Annu. Rev. Med. 53(1), 453–475 (2002).
[Crossref]

Suzuki, Y.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Szu, J. I.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Tahara, T.

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Thrane, L.

Timofeeva, L. B.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Tycho, A.

van der Schoot, J.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).

Venkat, P.

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

Vermeer, K. A.

K. A. Vermeer, J. Mo, J. J. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref]

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).

Virman, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

Wang, H.

Wang, R. K.

W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
[Crossref]

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref]

Wang, T.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Wang, Y.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

Watanabe, S.

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Weda, J. J.

Wu, X.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Xi, J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Xie, Y.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

Xu, K.

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

Yang, S.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

Yashin, K. S.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Ye, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Yu, E.

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Yu, Y.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Yuan, X.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Yura, H. T.

Zacharek, A.

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

Zagaynova, E. V.

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Zhang, F.

F. Zhang and J. Chen, “Infarct Measurement in Focal Cerebral Ischemia: TTC Staining,” in Animal Models of Acute Neurological Injuries II: Injury and Mechanistic Assessments, Volume 2, J. Chen, X.-M. Xu, Z. C. Xu, and J. H. Zhang, eds. (Humana Press, Totowa, NJ, 2012), pp. 93–98.

Zhang, N.

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Zhang, W.

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

Zhao, S.

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

Zhao, Y.

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

Zheng, X.

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

Zhou, L.

Annu. Rev. Med. (1)

C. Stapf and J. P. Mohr, “Ischemic Stroke Therapy,” Annu. Rev. Med. 53(1), 453–475 (2002).
[Crossref]

Appl. Opt. (2)

Arch. Neurol. (1)

J. C. Grotta, W. S. Burgin, A. El-Mitwalli, M. Long, M. Campbell, L. B. Morgenstern, M. Malkoff, and A. V. Alexandrov, “Intravenous Tissue-Type Plasminogen Activator Therapy for Ischemic Stroke: Houston Experience 1996 to 2000,” Arch. Neurol. 58(12), 2009–2013 (2001).
[Crossref]

Biomed. Opt. Express (2)

BMC Neurosci. (1)

H. Li, N. Zhang, H. Lin, Y. Yu, Q. Cai, L. Ma, and S. Ding, “Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice,” BMC Neurosci. 15(1), 13 (2014).
[Crossref]

Cardiovasc. Res. (1)

A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res. 45(3), 528–537 (2000).
[Crossref]

Comput. Math. Appl. (1)

K. Qin, K. Xu, F. Liu, and D. Li, “Image segmentation based on histogram analysis utilizing the cloud model,” Comput. Math. Appl. 62(7), 2824–2833 (2011).
[Crossref]

Front. Hum. Neurosci. (1)

J. Chen, P. Venkat, A. Zacharek, and M. Chopp, “Neurorestorative therapy for stroke,” Front. Hum. Neurosci. 8, 382 (2014).
[Crossref]

Front. Neuroanat. (1)

J. Defelipe, “The evolution of the brain, the human nature of cortical circuits, and intellectual creativity,” Front. Neuroanat. 5, 29 (2011).
[Crossref]

IEEE Trans. Med. Imag. (2)

L. Huang, Y. Fu, R. Chen, S. Yang, H. Qiu, X. Wu, S. Zhao, Y. Gu, and P. Li, “SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model,” IEEE Trans. Med. Imag. 38(11), 2695–2704 (2019).
[Crossref]

W. J. Choi, Y. Li, and R. K. Wang, “Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of Permanent Focal Ischemia,” IEEE Trans. Med. Imag. 38(6), 1427–1437 (2019).
[Crossref]

J Med. Signals Sens. (1)

R. Kafieh, H. Rabbani, and S. Kermani, “A review of algorithms for segmentation of optical coherence tomography from retina,” J Med. Signals Sens. 3(1), 45–60 (2013).
[Crossref]

J. Biomed. Opt. (2)

J. Liu, N. Ding, Y. Yu, X. Yuan, S. Luo, J. Luan, Y. Zhao, Y. Wang, and Z. Ma, “Optimized depth-resolved estimation to measure optical attenuation coefficients from optical coherence tomography and its application in cerebral damage determination,” J. Biomed. Opt. 24(3), 1–11 (2019).
[Crossref]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virman, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 8 (2008).
[Crossref]

J. Cereb. Blood Flow Metab. (2)

S. Yang, K. Liu, H. Ding, H. Gao, X. Zheng, Z. Ding, K. Xu, and P. Li, “Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model,” J. Cereb. Blood Flow Metab. 39(7), 1381–1393 (2019).
[Crossref]

W. Zhang, Y. Xie, T. Wang, B. Jing, H. Li, Q. Z. Li, Q. Y. Shui, and S. Ding, “Neuronal protective role of PBEF in a mouse model of cerebral ischemia,” J. Cereb. Blood Flow Metab. 30(12), 1962–1971 (2010).
[Crossref]

J. Mater. Chem. B (1)

A. Hong, M.-I. Aguilar, M. P. Del Borgo, C. G. Sobey, B. R. S. Broughton, and J. S. Forsythe, “Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke,” J. Mater. Chem. B 7(25), 3927–3943 (2019).
[Crossref]

J. Neurosci. Methods (1)

Y. Li, W. J. Choi, W. Qin, U. Baran, L. M. Habenicht, and R. K. Wang, “Optical coherence tomography based microangiography provides an ability to longitudinally image arteriogenesis in vivo,” J. Neurosci. Methods 274, 164–171 (2016).
[Crossref]

Laser Phys. Lett. (1)

E. B. Kiseleva, Y. V. Korzhimanova, A. A. Moiseev, K. S. Yashin, L. B. Timofeeva, G. V. Gelikonov, E. V. Zagaynova, and N. D. Gladkova, “Time-related ex vivo changes in the optical properties of normal brain tissues,” Laser Phys. Lett. 16(4), 045602 (2019).
[Crossref]

Nat. Commun. (1)

D. Lanjakornsiripan, B. J. Pior, D. Kawaguchi, S. Furutachi, T. Tahara, Y. Katsuyama, Y. Suzuki, Y. Fukazawa, and Y. Gotoh, “Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers,” Nat. Commun. 9(1), 1623 (2018).
[Crossref]

Neural Regener. Res. (1)

H. Lu and X. Lei, “The apparent diffusion coefficient does not reflect cytotoxic edema on the uninjured side after traumatic brain injury,” Neural Regener. Res. 9(9), 973–977 (2014).
[Crossref]

Neurophotonics (1)

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1(2), 025004 (2014).
[Crossref]

NeuroRx (1)

J. Chen and M. Chopp, “Neurorestorative treatment of stroke: cell and pharmacological approaches,” NeuroRx 3(4), 466–473 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

PLoS One (1)

V. J. Srinivasan, E. T. Mandeville, A. Can, F. Blasi, M. Climov, A. Daneshmand, J. H. Lee, E. Yu, H. Radhakrishnan, E. H. Lo, S. Sakadzic, K. Eikermann-Haerter, and C. Ayata, “Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke,” PLoS One 8(8), e71478 (2013).
[Crossref]

Sci. Transl. Med. (1)

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100 (2015).
[Crossref]

Stroke (1)

S. Watanabe, J. R. Hoffman, R. L. Craik, P. J. Hand, S. E. Croul, M. Reivich, and J. H. Greenberg, “A new model of localized ischemia in rat somatosensory cortex produced by cortical compression,” Stroke 32(11), 2615–2623 (2001).
[Crossref]

Other (3)

F. Zhang and J. Chen, “Infarct Measurement in Focal Cerebral Ischemia: TTC Staining,” in Animal Models of Acute Neurological Injuries II: Injury and Mechanistic Assessments, Volume 2, J. Chen, X.-M. Xu, Z. C. Xu, and J. H. Zhang, eds. (Humana Press, Totowa, NJ, 2012), pp. 93–98.

F. J. V. D. Meer, J. Perree, D. J. Faber, D. M. B. Sassoon, M. C. G. Aalders, and T. G. V. Leeuwen, Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT, SPIE BiOS (SPIE, 2005), Vol. 5686.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data,” 8209, 82090U (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Hybrid division multiplexing (HDM) enables enhanced separability in tissue phantoms (TPs) with different optical attenuation coefficients (OACs). (a) Representative cross-section of TP1 and TP2. TP1 is the left part, which consists of 1% agar and 5% intralipid, while TP2 is the right part, which consists of 1% agar and 10% intralipid. The curve on the left shows the averaged OCT depth profile, indicating the signal decay. (b) Cross-sectional OAC mappings of the rectangular region in (a) without (upper panel) and with (lower panel) the HDM method. $N$ = 25. The arrows indicate the boundary between TP1 and TP2. (c) OAC histograms of regions of interest (ROI1 and ROI2) with (bars) and without (dashed lines) the HDM method. ROI1 and ROI2 were selected from TP1 and TP2, respectively, in Fig. 1(b). (d) Measured separability scores and fitting lines of the spatial averaging method and HDM method with different kernel sizes.
Fig. 2.
Fig. 2. Validation of infarction detection using OAC-OCT through a fresh ex vivo brain slice with TTC staining. (a) Coronal brain slice with TTC staining. The hollow arrow indicates focal PT infarction (ec: external capsule; cc: corpus callosum). (b) OCT structural projection view of the coronal slice. (c) Projection image of OAC with the proposed HDM method. (d) Enlarged views of the rectangular region in (a) and (c). Blue dotted lines and yellow lines indicate the boundaries of the TTC- and OAC-defined infarction, respectively. (e) OAC histograms of the selected infarct (red box in (d)) and normal (green box in (d)) regions with (NHDM = 25) and without (N = 1) the HDM method. (f) Diagnostic sensitivity (red) and specificity (blue) of using OAC with the HDM method (NHDM = 25). A threshold of 0.90 mm−1 (see the black dashed line) yielded a sensitivity of 100% and a specificity of 83.8%. The large field-of-view in (b) and (c) was achieved by stitching together 24 images of size 3 mm by 3 mm. Both the structural and OAC projections were generated by averaging over a depth range from the surface to a depth of 500 µm.
Fig. 3.
Fig. 3. Correlation of the Optical attenuation coefficient (OAC) with the changes in blood perfusion and histology in the photothrombosis (PT) stroke model in vivo. (a) Representative OAC time sequences. Upper panel: OAC projection maps (x-y). Ischemia core (IC): the red dashed curve; the reversible penumbra (RP): the annular ring between the green and red dashed curves; the ischemia core and penumbra (CP) boundary: the boundary between IC and RP. Lower panel: Corresponding OAC cross-sections (x-z) along the yellow dashed line. (b) Representative OCTA time sequences. Upper panel: OCTA maps (x-y). The yellow circle for Day 1 marks the ischemia area caused by laser irradiation, and the dotted curve for Day 3 marks the expanded ischemic area. Lower panel: Corresponding OCTA cross-sections (x-z) along the yellow dashed line. (c) Representative HE time sequences. Upper panel: brain slices with HE staining (6 rats). Lower panel: Corresponding enlarged views of 6 ROIs from the damage boundary in the upper panel. The black dashed line traces the boundary of the damaged area according to HE staining. The hollow arrowheads mark normal neurons with a large round nucleus and prominent nucleoli in the baseline. The solid arrows mark apoptotic neurons, and hollow arrows marked edema and shrunken nuclei in the infarction area. The solid arrowheads mark neurons with normal morphological features around the infarction area. (d) Representative GFAP time sequences. Upper panel: Corresponding GFAP immunostaining sections (6 rats). The dashed lines represent boundaries drawn according to GFAP+ cells. Lower panel: Enlarged views of 6 ROIs from the damage boundary in the upper panel. The black dashed lines represent the boundary of the damaged area according to GFAP+ cells, and the hollow and solid arrowheads are astrocyte examples in the undamaged area and around the damaged region. The solid arrows are astrocyte examples appearing in the damaged area, which formed astroglial scar tissue. (e) Representative NeuN time sequences. Upper panel: Corresponding NeuN immunostaining sections (6 rats). The dashed lines represent boundaries drawn according to NeuN+ cells. Lower panel: Corresponding enlarged view of 6 ROIs from the damage boundary in the upper panel. The black dashed line represents the boundary of the infarcted region, and the hollow and solid arrowheads indicate normal neurons in the undamaged area. (f) Measurement of ischemic or damaged areas based on blood perfusion (pink squares), OAC (red circles), and HE staining (blue triangles). (g-i) Measurement of the OAC (red circles) and the density of GFAP+ (blue triangles) and NeuN+ (green squares) cells in IC (g), the CP boundary (h), and RP (i) over time after PT. Scale bar = 500 µm.

Tables (1)

Tables Icon

Table 1. Groups of rats used for optical imaging of the cortex, imaging times, and methods of imaging. Days 1–21 indicate the day post PT occlusion. All the rats were male and 10 weeks old.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ z I z 2 Δ z + 1 I z ,

Metrics