Abstract

Ocular biometric parameters, including full shape crystalline lens, were assessed in myopes and emmetropes using 3-D optical coherence tomography. The anterior chamber depth, the radius of the curvature of the anterior cornea, anterior lens, and posterior lens, lens thickness, lens equatorial diameter, surface area, equatorial position, volume, and power, were evaluated as functions of refractive errors and axial lengths while controlling for age effects. The crystalline lens appears to change with myopia consistent with lens thinning, equatorial, and capsular stretching while keeping constant volume. Axial elongation appears counteracted by a crystalline lens power reduction, while corneal power remains unaffected.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
OCT-based crystalline lens topography in accommodating eyes

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, and Susana Marcos
Biomed. Opt. Express 6(12) 5039-5054 (2015)

OCT-based full crystalline lens shape change during accommodation in vivo

Eduardo Martinez-Enriquez, Pablo Pérez-Merino, Miriam Velasco-Ocana, and Susana Marcos
Biomed. Opt. Express 8(2) 918-933 (2017)

Cross-sectional study of changes in the ocular components in school children

David A. Goss and Tonya W. Jackson
Appl. Opt. 32(22) 4169-4173 (1993)

References

  • View by:
  • |
  • |
  • |

  1. E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
    [Crossref]
  2. I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
    [Crossref]
  3. F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
    [Crossref]
  4. L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
    [Crossref]
  5. N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
    [Crossref]
  6. C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
    [Crossref]
  7. D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
    [Crossref]
  8. K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).
  9. D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
    [Crossref]
  10. T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
    [Crossref]
  11. D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
    [Crossref]
  12. T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
    [Crossref]
  13. D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).
  14. J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
    [Crossref]
  15. R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
    [Crossref]
  16. T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
    [Crossref]
  17. A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
    [Crossref]
  18. D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
    [Crossref]
  19. J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
    [Crossref]
  20. P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
    [Crossref]
  21. G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
    [Crossref]
  22. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [Crossref]
  23. M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref]
  24. M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
    [Crossref]
  25. M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref]
  26. J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
    [Crossref]
  27. A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
    [Crossref]
  28. G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
    [Crossref]
  29. E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
    [Crossref]
  30. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref]
  31. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
    [Crossref]
  32. V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
    [Crossref]
  33. H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
    [Crossref]
  34. K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
    [Crossref]
  35. J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref]
  36. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref]
  37. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref]
  38. E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
    [Crossref]
  39. E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
    [Crossref]
  40. E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).
  41. E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
    [Crossref]
  42. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
    [Crossref]
  43. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref]
  44. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
    [Crossref]
  45. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
    [Crossref]
  46. M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
    [Crossref]
  47. A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
    [Crossref]
  48. S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref]
  49. M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
    [Crossref]
  50. V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
    [Crossref]
  51. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
    [Crossref]
  52. N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
    [Crossref]
  53. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
    [Crossref]
  54. Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
    [Crossref]
  55. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref]
  56. A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
    [Crossref]
  57. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref]
  58. A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
    [Crossref]
  59. C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
    [Crossref]
  60. K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
    [Crossref]
  61. N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
    [Crossref]
  62. D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
    [Crossref]
  63. D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
    [Crossref]

2019 (2)

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]

2018 (3)

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

2017 (2)

2016 (3)

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]

2015 (4)

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

2013 (3)

2012 (4)

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]

2011 (2)

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]

2010 (2)

2009 (4)

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]

Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]

2008 (2)

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]

2007 (2)

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

2006 (1)

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

2005 (3)

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

2004 (4)

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref]

2001 (2)

M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]

1999 (3)

N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]

N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]

1998 (3)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]

T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

1997 (1)

C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]

1996 (1)

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]

1995 (3)

D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]

1994 (2)

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

1993 (1)

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]

1992 (2)

L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

1988 (1)

A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]

1987 (1)

N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]

1981 (1)

M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]

1975 (1)

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Adams, A. J.

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

Alejandre-Alba, N.

Anderson, C. R.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Arnarsson, A.

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Asbach, P.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

Atchison, D. A.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Augsten, R.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

Aung, T.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Baikoff, G.

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

Barbero, S.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Baskaran, M.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Beenett, A.

A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]

Bekesi, N.

Birkenfeld, J.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

Biswas, S.

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Blanco, F. G.

F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]

Borja, D.

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

Brady, T. J.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Bron, A. J.

N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]

Brown, N. P.

N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]

Cano, D.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Carney, L. G.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Cheng, H.-M.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Chew, P. T.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Chia, N.

Chiang, T.-H.

Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]

Clem, P. M.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Cook, C. A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

Cotter, S. A.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Cottriall, C.

N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]

Dankert, S.

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

Dawczynski, J.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

De Castro, A.

de la Hoz, A.

Dolgin, E.

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]

Dorronsoro, C.

A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Dubbelman, M.

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]

M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]

Durán, S.

Durán-Poveda, S.

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

Erb-Eigner, K.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

Fernandez, J. C. S.

F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]

Ferraz, C.

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

Findl, O.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

Foster, P. J.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Frane, S. L.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

Friedman, D. S.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Friedman, N. E.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

Fusaro, R. E.

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

Gambra, E.

Ganguli, D.

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Garner, L.

L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]

Garner, L. F.

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]

Gentle, A.

N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]

Germann, J.

Glasser, A.

V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]

Gora, M.

Gorczynska, I.

Goss, D. A.

T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]

D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]

D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]

Grosvenor, T.

T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]

Group, C. S.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Grulkowski, I.

Hackl, C.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

Hayes, J. R.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

He, M.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Heilman, B. M.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Hirnschall, N.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

How, A. C.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Hyun, J.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

Iribarren, R.

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

Ishii, K.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

Iwata, H.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

Jackson, T. W.

D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]

Jiménez-Alfaro, I.

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

Jonasson, F.

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Jones, C. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Jones, L. A.

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

Jones-Jordan, L. A.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Jordan, L. A.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

Kaufman, P. L.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

Kleinstein, R. N.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Koenigsdoerffer, E.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

Koretz, J. F.

J. F. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref]

N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

Kowalczyk, A.

Kumar, R. S.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Kwong, K. K.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Lanca, C.

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

Landers, M. B.

M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]

Lavanya, R.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Lin, L. L.-K.

Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]

Lin, W. K.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

Llorente, L.

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Lutun, E.

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

Mainstone, J. C.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Manns, F.

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

Manny, R. E.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Marcos, S.

A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Martinez-Enriquez, E.

A. de la Hoz, J. Germann, E. Martinez-Enriquez, D. Pascual, N. Bekesi, N. Alejandre-Alba, C. Dorronsoro, and S. Marcos, “Design and performance of a shape-changing accommodating intraocular lens,” Optica 6(8), 1050–1057 (2019).
[Crossref]

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

Martínez-Enríquez, E.

McBrien, N. A.

N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]

N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]

McFadden, S. A.

Millodot, M.

N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]

Mitchell, G. L.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

Moeschberger, M. L.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

Mohamed, A.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Morgan, I. G.

I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]

Mutti, D. O.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

Ohno-Matsui, K.

I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]

Olsen, T.

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Ortiz, S.

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref]

Oshika, T.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

Parel, J.-M.

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

Pascual, D.

Perez-Merino, P.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]

Pérez-Merino, P.

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]

Pfahnl, A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

Pope, J. M.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Pritchard, N.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Ramasubramanian, V.

V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]

Remon, L.

Revuelta, L.

Riley, R. A.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

Roy, I.

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Rozema, J.

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

Ruggeri, M.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Sangwan, V.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Sanz, M. A. M.

F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]

Sasaki, H.

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Sasaki, K.

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Saw, S.-M.

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]

Schmid, K. L.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Schmidt, C.

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

Scott, R.

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]

L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]

Semmlow, J. L.

Sengupta, M.

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Shih, Y.-F.

Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]

Siedlecki, D.

Singh, O. S.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Sinnott, L. T.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Smith, G.

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]

Sravani, N. G.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Stefánsson, E.

M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]

Stephensen, A. L.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Strenk, L. M.

Strenk, S. A.

Strobel, J.

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

Strugnell, W. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

Sun, M.

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

Szkulmowski, M.

Szlag, D.

Twelker, J. D.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

Uhlhorn, S.

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

Van der Heijde, G.

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]

M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]

Van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

Velasco-Ocana, M.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

Weeber, H. A.

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]

Wei, J.

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

Wickham, M. G.

D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]

Wildsoet, C. F.

C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]

Williams, S.

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

Wilson, M. D.

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Wojtkowski, M.

Wolbarsht, M. L.

M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]

Wong, H.-T.

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Woods, B. T.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Xiong, J.

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

Yamanari, M.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

Yap, M.

L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]

Yasuno, Y.

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

Zadnik, K.

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

Acta Ophthalmol. (1)

N. A. McBrien and M. Millodot, “A biometric investigation of late onset myopic eyes,” Acta Ophthalmol. 65(4), 461–468 (1987).
[Crossref]

Acta Ophthalmol. Scand. (1)

T. Olsen, A. Arnarsson, H. Sasaki, K. Sasaki, and F. Jonasson, “On the ocular refractive components: the Reykjavik Eye Study,” Acta Ophthalmol. Scand. 85(4), 361–366 (2007).
[Crossref]

Am. J. Ophthalmol. (1)

M. B. Landers, E. Stefánsson, and M. L. Wolbarsht, “The optics of vitreous surgery,” Am. J. Ophthalmol. 91(5), 611–614 (1981).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (8)

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref]

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, L. Revuelta, S. A. McFadden, and S. Marcos, “Three-dimensional OCT based guinea pig eye model: relating morphology and optics,” Biomed. Opt. Express 8(4), 2173–2184 (2017).
[Crossref]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref]

M. Sun, P. Pérez-Merino, E. Martínez-Enríquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref]

Clin. Exp. Optom. (1)

J. C. Mainstone, L. G. Carney, C. R. Anderson, P. M. Clem, A. L. Stephensen, and M. D. Wilson, “Corneal shape in hyperopia,” Clin. Exp. Optom. 81(3), 131–137 (1998).
[Crossref]

Doc. Ophthalmol. (1)

D. A. Goss and M. G. Wickham, “Retinal-image mediated ocular growth as a mechanism for juvenile onset myopia and for emmetropization,” Doc. Ophthalmol. 90(4), 341–375 (1995).
[Crossref]

Eye (1)

N. P. Brown, J. F. Koretz, and A. J. Bron, “The development and maintenance of emmetropia,” Eye 13(1), 83–92 (1999).
[Crossref]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

J. Dawczynski, E. Koenigsdoerffer, R. Augsten, and J. Strobel, “Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation,” Graefe’s Arch. Clin. Exp. Ophthalmol. 245(3), 423–425 (2007).
[Crossref]

Indian J. Ophthalmol. (1)

D. Ganguli, I. Roy, S. Biswas, and M. Sengupta, “Study of corneal power and diameter in simple refractive error,” Indian J. Ophthalmol. 23(1), 6–11 (1975).

Invest. Ophthalmol. Visual Sci. (10)

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position,” Invest. Ophthalmol. Visual Sci. 57(9), OCT600 (2016).
[Crossref]

K. Erb-Eigner, N. Hirnschall, C. Hackl, C. Schmidt, P. Asbach, and O. Findl, “Predicting lens diameter: ocular biometry with high-resolution MRI,” Invest. Ophthalmol. Visual Sci. 56(11), 6847–6854 (2015).
[Crossref]

K. Zadnik, D. O. Mutti, R. E. Fusaro, and A. J. Adams, “Longitudinal evidence of crystalline lens thinning in children,” Invest. Ophthalmol. Visual Sci. 36, 1581–1587 (1995).

J. Rozema, S. Dankert, R. Iribarren, C. Lanca, and S.-M. Saw, “Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children,” Invest. Ophthalmol. Visual Sci. 60(8), 3091–3099 (2019).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. A. Jones, N. E. Friedman, S. L. Frane, W. K. Lin, M. L. Moeschberger, and K. Zadnik, “Axial growth and changes in lenticular and corneal power during emmetropization in infants,” Invest. Ophthalmol. Visual Sci. 46(9), 3074–3080 (2005).
[Crossref]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye Shape in Emmetropia and Myopia,” Invest. Ophthalmol. Visual Sci. 45(10), 3380–3386 (2004).
[Crossref]

K. Ishii, M. Yamanari, H. Iwata, Y. Yasuno, and T. Oshika, “Relationship between changes in crystalline lens shape and axial elongation in young children,” Invest. Ophthalmol. Visual Sci. 54(1), 771–777 (2013).
[Crossref]

E. Martinez-Enriquez, A. Mohamed, M. Ruggeri, M. Velasco-Ocana, S. Williams, B. M. Heilman, A. De Castro, P. Perez-Merino, N. G. Sravani, and V. Sangwan, “Full shape crystalline lens geometrical changes with age from 3-D OCT images in vivo and ex vivo,” Invest. Ophthalmol. Visual Sci. 59, 268 (2018).

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Invest. Ophthalmol. Visual Sci. 46(7), 2317–2327 (2005).
[Crossref]

Y.-F. Shih, T.-H. Chiang, and L. L.-K. Lin, “Lens thickness changes among schoolchildren in Taiwan,” Invest. Ophthalmol. Visual Sci. 50(6), 2637–2644 (2009).
[Crossref]

J. Cataract Refractive Surg. (2)

V. Ramasubramanian and A. Glasser, “Objective measurement of accommodative biometric changes using ultrasound biomicroscopy,” J. Cataract Refractive Surg. 41(3), 511–526 (2015).
[Crossref]

G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refractive Surg. 30(9), 1843–1850 (2004).
[Crossref]

J. Mod. Opt. (1)

A. De Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58(19-20), 1781–1787 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref]

J. Vis. (2)

P. Rosales, M. Dubbelman, S. Marcos, and R. Van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[Crossref]

L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vis. 4(4), 5 (2004).
[Crossref]

Lancet (1)

I. G. Morgan, K. Ohno-Matsui, and S.-M. Saw, “Myopia,” Lancet 379(9827), 1739–1748 (2012).
[Crossref]

Nature (1)

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref]

Oph. Phys. Optics. (4)

C. F. Wildsoet, “Active emmetropization — evidence for its existence and ramifications for clinical practice,” Oph. Phys. Optics. 17(4), 279–290 (1997).
[Crossref]

G. Smith and L. F. Garner, “Determination of the radius of curvature of the anterior lens surface from the Purkinje images,” Oph. Phys. Optics. 16(2), 135–143 (1996).
[Crossref]

A. Beenett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Oph. Phys. Optics. 8(1), 53–59 (1988).
[Crossref]

R. Scott and T. Grosvenor, “Structural model for emmetropic and myopic eyes,” Oph. Phys. Optics. 13(1), 41–47 (1993).
[Crossref]

Ophthalmology (1)

A. C. How, M. Baskaran, R. S. Kumar, M. He, P. J. Foster, R. Lavanya, H.-T. Wong, P. T. Chew, D. S. Friedman, and T. Aung, “Changes in anterior segment morphology after laser peripheral iridotomy: an anterior segment optical coherence tomography study,” Ophthalmology 119(7), 1383–1387 (2012).
[Crossref]

Opt. Express (3)

Optica (1)

Optometry Vision Sci. (11)

V. Ramasubramanian and A. Glasser, “Predicting accommodative response using paraxial schematic eye models,” Optometry Vision Sci. 93(7), 692–704 (2016).
[Crossref]

H.-M. Cheng, O. S. Singh, K. K. Kwong, J. Xiong, B. T. Woods, and T. J. Brady, “Shape of the myopic eye as seen with high-resolution magnetic resonance imaging,” Optometry Vision Sci. 69(9), 698–701 (1992).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optometry Vision Sci. 78(6), 411–416 (2001).
[Crossref]

T. Grosvenor and R. Scott, “Role of the axial length/corneal radius ratio in determining the refractive state of the eye,” Optometry Vision Sci. 71(9), 573–579 (1994).
[Crossref]

D. A. Goss and T. W. Jackson, “Clinical Findings Before the Onset of Myopia in Youth: I. Ocular Optical Components,” Optometry Vision Sci. 72(12), 870–878 (1995).
[Crossref]

T. Grosvenor and D. A. Goss, “Role of the cornea in emmetropia and myopia,” Optometry Vision Sci. 75(2), 132–145 (1998).
[Crossref]

D. O. Mutti, G. L. Mitchell, L. T. Sinnott, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and C. S. Group, “Corneal and crystalline lens dimensions before and after myopia onset,” Optometry Vision Sci. 89(3), 251–262 (2012).
[Crossref]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jordan, N. E. Friedman, S. L. Frane, and W. K. Lin, “Ocular component development during infancy and early childhood,” Optometry Vision Sci. 95(11), 976–985 (2018).
[Crossref]

F. G. Blanco, J. C. S. Fernandez, and M. A. M. Sanz, “Axial length, corneal radius, and age of myopia onset,” Optometry Vision Sci. 85(2), 89–96 (2008).
[Crossref]

L. Garner, M. Yap, and R. Scott, “Crystalline lens power in myopia,” Optometry Vision Sci. 69(11), 863–865 (1992).
[Crossref]

N. A. McBrien, A. Gentle, and C. Cottriall, “Optical correction of induced axial myopia in the tree shrew: implications for emmetropization,” Optometry Vision Sci. 76(6), 419–427 (1999).
[Crossref]

Sci. Rep. (1)

E. Martinez-Enriquez, P. Pérez-Merino, S. Durán-Poveda, I. Jiménez-Alfaro, and S. Marcos, “Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas,” Sci. Rep. 8(1), 9829 (2018).
[Crossref]

Vision Res. (6)

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, and P. L. Kaufman, “Aging of the human crystalline lens and anterior segment,” Vision Res. 34(22), 2945–2954 (1994).
[Crossref]

M. Dubbelman, G. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref]

M. Dubbelman and G. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Differences in the 3D eye biometry between an emmetropic eye (S#5, 23 y/o) and a myopic eye (S#19, 24 y/o). The right graph includes axial length; the left graph a blown up version of the anterior segment. The blue and red surfaces represent the anterior and posterior surfaces of the cornea of S#5. The green and magenta surfaces represent the crystalline lens of both subjects. Myopic eye shows thinner and flatter lens with deeper anterior chamber depth compared to emmetropic eye. Registration of both models is performed with respect to the anterior corneal apex.
Fig. 2.
Fig. 2. Biometric parameters as a function of refractive error. (a) anterior chamber depth (b) lens equatorial diameter, (c) posterior lens radius of curvature, (d) lens surface area, (e) axial length, (f) ratio of lens thickness to axial length, (g) ratio of axial length to corneal radius of curvature, (h) ratio of radius of curvature of cornea to posterior lens, (i) lens power. Color bar/coding represents the age. Solid red lines are regression fits to the data (correlation coefficient is shown in the lower right corner; p-values and slopes for all parameters are shown in Table 1).
Fig. 3.
Fig. 3. Biometric parameters as a function of axial length. (a) lens thickness, (b) anterior chamber depth, (c) lens equatorial diameter, (d) equatorial plane position, (e) anterior lens radius of curvature, (f) posterior lens radius of curvature, (g) lens surface area, (h) ratio of radius of curvature of cornea to posterior lens, (i) lens power. Color bar/coding represents the age. Solid red lines are regression fits to the data (correlation coefficient is shown in the lower right corner; p-value and slopes of all parameters are shown in Table 2).

Tables (2)

Tables Icon

Table 1. Partial correlation coefficient (r), p-value and the slope of the regression line (m) for the linear regression of the biometric parameters with the refractive error. Asterisks indicate statistically significant correlations.

Tables Icon

Table 2. Partial correlation coefficient (r), p-value and the slope of the regression line (m) of the biometric parameters with axial length. Asterisks indicate statistically significant correlations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P L = ( n L n ) ( 1 R A L 1 R P L ) + ( n L n ) 2 × L T R A L × R P L × n L