Abstract

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new imaging modality in ophthalmology. For clinical investigations, the amplitude-weighted mean of two or three lifetime components is usually analyzed. In this study, we investigated the effects of fixation of lifetime components. This resulted in slightly higher fit errors but mean lifetimes were highly correlated to those from fits with variable individual lifetimes. Furthermore, this approach resulted in a similarly good discrimination of diabetic retinopathy patients from controls, a reduction of the computational workload, a de-noising of the mean lifetime images and allows higher local resolution. Thus, fixation of lifetimes in the fit of FLIO data could be superior for clinical routine analysis of FLIO data.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bleaching effects and fluorescence lifetime imaging ophthalmoscopy

Matthias Klemm, Lydia Sauer, Sascha Klee, Dietmar Link, Sven Peters, Martin Hammer, Dietrich Schweitzer, and Jens Haueisen
Biomed. Opt. Express 10(3) 1446-1461 (2019)

Fundus autofluorescence beyond lipofuscin: lesson learned from ex vivo fluorescence lifetime imaging in porcine eyes

Martin Hammer, Lydia Sauer, Matthias Klemm, Sven Peters, Rowena Schultz, and Jens Haueisen
Biomed. Opt. Express 9(7) 3078-3091 (2018)

Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice

James A. Feeks and Jennifer J. Hunter
Biomed. Opt. Express 8(5) 2483-2495 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
    [Crossref]
  2. L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
    [Crossref]
  3. L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
    [Crossref]
  4. L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
    [Crossref]
  5. L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
    [Crossref]
  6. L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
    [Crossref]
  7. L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
    [Crossref]
  8. L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
    [Crossref]
  9. J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
    [Crossref]
  10. C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
    [Crossref]
  11. C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
    [Crossref]
  12. C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
    [Crossref]
  13. C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
    [Crossref]
  14. C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
    [Crossref]
  15. C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
    [Crossref]
  16. C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
    [Crossref]
  17. C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
    [Crossref]
  18. C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
    [Crossref]
  19. C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
    [Crossref]
  20. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
    [Crossref]
  21. R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
    [Crossref]
  22. C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
    [Crossref]
  23. J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, New York, 2006). 129–132
  24. D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
    [Crossref]
  25. K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
    [Crossref]
  26. S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
    [Crossref]
  27. ANSI, American National Standard for the safe use of laser.ANSI Z 136.1-2014 (Laser Institute of America, Orlando, Suite 128, 13501 Ingenuite Drive, FL 32826, 2014), ISBN: 978-1-940168-01-2.
  28. G. A. Murashova, C. A. Mancuso, J. L. Canfield, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser,” Biomed. Opt. Express 8(11), 5228–5242 (2017).
    [Crossref]
  29. G. E. Eldred and M. L. Katz, “Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
    [Crossref]
  30. A. J. Walsh, J. T. Sharick, M. C. Skala, and H. T. Beier, “Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed,” Biomed. Opt. Express 7(4), 1385–1399 (2016).
    [Crossref]
  31. J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
    [Crossref]

2018 (7)

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

2017 (7)

G. A. Murashova, C. A. Mancuso, J. L. Canfield, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser,” Biomed. Opt. Express 8(11), 5228–5242 (2017).
[Crossref]

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

2016 (5)

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

A. J. Walsh, J. T. Sharick, M. C. Skala, and H. T. Beier, “Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed,” Biomed. Opt. Express 7(4), 1385–1399 (2016).
[Crossref]

2015 (3)

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

2014 (2)

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

2011 (1)

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

2007 (1)

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

2005 (1)

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

1988 (1)

G. E. Eldred and M. L. Katz, “Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

1983 (1)

J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
[Crossref]

Abegg, M.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Andersen, K. M.

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

Augsten, R.

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

Bar, K. J.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Becker, W.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Beecham, J. M.

J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
[Crossref]

Beier, H. T.

Berezin, M. Y.

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

Berger, L.

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

Bergmann, A.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Bernstein, P. S.

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

Birckner, E.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Blatz, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Brand, L.

J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
[Crossref]

Canfield, J. L.

Chen, C.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Cornwall, M. C.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Crouch, R. K.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Dantus, M.

Dawczynski, J.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Deutsch, L.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Dysli, C.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Dysli, M.

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

Eldred, G. E.

G. E. Eldred and M. L. Katz, “Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

Enzmann, V.

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

Fink, R.

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

Gensure, R. H.

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

Hageman, G. S.

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

Hammer, M.

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Hatz, K.

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

Hunter, J. J.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

Jentsch, S.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Katz, M. L.

G. E. Eldred and M. L. Katz, “Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

Klemm, M.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Kloos, C. H.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Knutson, J. R.

J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
[Crossref]

Koutalos, Y.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Kowal, J.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Kreilkamp, L.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

La Schiazza, O.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, New York, 2006). 129–132

Leichtle, A. B.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Li, B.

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

Mancuso, C. A.

Meller, D.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

Menke, M. N.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Mueller, U. A.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Muller, N.

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

Murashova, G. A.

Palczewska, G.

G. A. Murashova, C. A. Mancuso, J. L. Canfield, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser,” Biomed. Opt. Express 8(11), 5228–5242 (2017).
[Crossref]

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

Palczewski, K.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

G. A. Murashova, C. A. Mancuso, J. L. Canfield, S. Sakami, K. Palczewski, G. Palczewska, and M. Dantus, “Multimodal nonlinear optical imaging of unstained retinas in the epi-direction with a sub-40 fs Yb-fiber laser,” Biomed. Opt. Express 8(11), 5228–5242 (2017).
[Crossref]

Pascal, E.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

Peters, S.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Quellec, G.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Quick, S.

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Ramm, L.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

Sakami, S.

Sauer, L.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

Schenke, S.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Schmidt, J.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

Schmidtke, K. U.

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Schurch, K.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

Schwarz, C.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

Schweitzer, D.

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Schweitzer, F.

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Sharick, J. T.

Sharma, R.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

Skala, M. C.

Tran, H. V.

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

Tsina, E.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Vijayaraghavan, S.

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Walsh, A. J.

Williams, D. R.

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

Wolf, S.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Wolf-Schnurrbusch, U.

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Zinkernagel, M. S.

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

Acta Ophthalmol. (4)

L. Sauer, M. Klemm, S. Peters, D. Schweitzer, J. Schmidt, L. Kreilkamp, L. Ramm, D. Meller, and M. Hammer, “Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach,” Acta Ophthalmol. 96(3), 257–266 (2018).
[Crossref]

L. Sauer, S. Peters, J. Schmidt, D. Schweitzer, M. Klemm, L. Ramm, R. Augsten, and M. Hammer, “Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy,” Acta Ophthalmol. 95(5), 481–492 (2017).
[Crossref]

J. Schmidt, S. Peters, L. Sauer, D. Schweitzer, M. Klemm, R. Augsten, N. Muller, and M. Hammer, “Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy,” Acta Ophthalmol. 95(1), 33–40 (2017).
[Crossref]

S. Jentsch, D. Schweitzer, K. U. Schmidtke, S. Peters, J. Dawczynski, K. J. Bar, and M. Hammer, “Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer's disease,” Acta Ophthalmol. 93(4), e241–e247 (2015).
[Crossref]

Biomed. Opt. Express (2)

Biophys J. (1)

C. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys J. 88(3), 2278–2287 (2005).
[Crossref]

Chem. Phys. Lett. (1)

J. R. Knutson, J. M. Beecham, and L. Brand, “Simultaneous analysis of multiple fluorescence decay curves: a global approach,” Chem. Phys. Lett. 102(6), 501–507 (1983).
[Crossref]

Exp. Eye Res. (2)

G. E. Eldred and M. L. Katz, “Fluorophores of the human retinal pigment epithelium: Separation and spectral characterization,” Exp. Eye Res. 47(1), 71–86 (1988).
[Crossref]

C. Dysli, M. Dysli, M. S. Zinkernagel, and V. Enzmann, “Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice,” Exp. Eye Res. 153, 178–185 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (12)

R. Sharma, C. Schwarz, J. J. Hunter, G. Palczewska, K. Palczewski, and D. R. Williams, “Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy,” Invest. Ophthalmol. Visual Sci. 58(1), 604–613 (2017).
[Crossref]

L. Sauer, D. Schweitzer, L. Ramm, R. Augsten, M. Hammer, and S. Peters, “Impact of Macular Pigment on Fundus Autofluorescence Lifetimes,” Invest. Ophthalmol. Visual Sci. 56(8), 4668–4679 (2015).
[Crossref]

L. Sauer, K. M. Andersen, B. Li, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment,” Invest. Ophthalmol. Visual Sci. 59(7), 3094–3103 (2018).
[Crossref]

L. Sauer, R. H. Gensure, K. M. Andersen, L. Kreilkamp, G. S. Hageman, M. Hammer, and P. S. Bernstein, “Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 59(4), AMD65–AMD77 (2018).
[Crossref]

C. Dysli, R. Fink, S. Wolf, and M. S. Zinkernagel, “Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 58(11), 4856–4862 (2017).
[Crossref]

C. Dysli, G. Quellec, M. Abegg, M. N. Menke, U. Wolf-Schnurrbusch, J. Kowal, J. Blatz, O. La Schiazza, A. B. Leichtle, S. Wolf, and M. S. Zinkernagel, “Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects,” Invest. Ophthalmol. Visual Sci. 55(4), 2106–2113 (2014).
[Crossref]

C. Dysli, K. Schurch, E. Pascal, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa,” Invest. Ophthalmol. Visual Sci. 59(5), 1769–1778 (2018).
[Crossref]

C. Dysli, S. Wolf, K. Hatz, and M. S. Zinkernagel, “Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression,” Invest. Ophthalmol. Visual Sci. 57(3), 832–841 (2016).
[Crossref]

C. Dysli, S. Wolf, H. V. Tran, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Patients With Choroideremia Identify Photoreceptors in Areas With Retinal Pigment Epithelium Atrophy,” Invest. Ophthalmol. Visual Sci. 57(15), 6714–6721 (2016).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging in retinal artery occlusion,” Invest. Ophthalmol. Visual Sci. 56(5), 3329–3336 (2015).
[Crossref]

C. Dysli, S. Wolf, and M. S. Zinkernagel, “Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 57(6), 2479–2487 (2016).
[Crossref]

C. Dysli, M. Dysli, V. Enzmann, S. Wolf, and M. S. Zinkernagel, “Fluorescence lifetime imaging of the ocular fundus in mice,” Invest. Ophthalmol. Visual Sci. 55(11), 7206–7215 (2014).
[Crossref]

J. Biomed. Opt. (1)

L. Sauer, K. M. Andersen, C. Dysli, M. S. Zinkernagel, P. S. Bernstein, and M. Hammer, “Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy,” J. Biomed. Opt. 23(09), 1–20 (2018).
[Crossref]

Microsc. Res. Tech. (1)

D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007).
[Crossref]

Ophthalmol. Retina (1)

L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2,” Ophthalmol. Retina 2(6), 587–598 (2018).
[Crossref]

Proc. SPIE (1)

D. Schweitzer, M. Klemm, S. Quick, L. Deutsch, S. Jentsch, M. Hammer, J. Dawczynski, C. H. Kloos, and U. A. Mueller, “Detection of early metabolic alterations in the ocular fundus of diabetic patients by time-resolved autofluorescence of endogenous fluorophores,” Proc. SPIE 8087, 80871G (2011).
[Crossref]

Prog. Retinal Eye Res. (1)

C. Dysli, S. Wolf, M. Y. Berezin, L. Sauer, M. Hammer, and M. S. Zinkernagel, “Fluorescence lifetime imaging ophthalmoscopy,” Prog. Retinal Eye Res. 60, 120–143 (2017).
[Crossref]

Retina (1)

C. Dysli, L. Berger, S. Wolf, and M. S. Zinkernagel, “Fundus Autofluorescence Lifetimes and Central Serous Chorioretinopathy,” Retina 37(11), 2151–2161 (2017).
[Crossref]

Trans. Vis. Sci. Tech. (1)

K. M. Andersen, L. Sauer, R. H. Gensure, M. Hammer, and P. S. Bernstein, “Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO),” Trans. Vis. Sci. Tech. 7(3), 20 (2018).
[Crossref]

Other (2)

ANSI, American National Standard for the safe use of laser.ANSI Z 136.1-2014 (Laser Institute of America, Orlando, Suite 128, 13501 Ingenuite Drive, FL 32826, 2014), ISBN: 978-1-940168-01-2.

J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, New York, 2006). 129–132

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Fundus Autofluorescence intensity image obtained with FLIO showing the ETDRS-grid and the investigated areas center (c), inner ring (IR) and outer ring (OR)
Fig. 2.
Fig. 2. lifetime component τ1 versus age for healthy subjects (control cohort 1).
Fig. 3.
Fig. 3. Top: Color-coded images of τm [ps] in the SSC from fit 1 (left) and fit 2 (right) of the subject shown in Fig. 1. Scale bar shows identical color coding for both panels. Bottom: Respective color-coded images of χ2.
Fig. 4.
Fig. 4. color coded image of the abundance a2 of the second fluorescence component in the LSC from fit 1 (left) and fit 2 (right) of a patient with diabetic retinopathy
Fig. 5.
Fig. 5. color coded images of the mean lifetime τm of three patients with diabetic retinopathy in the LSC. Left: fit 1 with 5 × 5 pixel binning, middle: fit 2 with 5 × 5 pixel binning, right: fit 2 with 3 × 3 pixel binning

Tables (6)

Tables Icon

Table 1. Determination coefficient R2 and significance p for the correlation of lifetimes from fit 1, averaged over the whole image excluding the optic disk, with subject age

Tables Icon

Table 2. Equations for the calculation of fixed τ1…3 from the subject’s age

Tables Icon

Table 3. Cronbach’s a describing the dependence of parameters a1…3 and τ1…3 from fit 1 as well as a1…3 from fit 2

Tables Icon

Table 4. Median and inter-quartile range of τm in ps from fit 1 and fit 2 for control cohort 2 and patients with diabetic retinopathy

Tables Icon

Table 5. The AUC values of the ROC curve for τm from fits 1 and 2

Tables Icon

Table 6. Median and inter-quartile range of τm in ps from fit 1 and fit 2 for healthy control cohort 1. c = central area, ir = inner ring, or = outer ring of the ETDRS grid, correlation = Pearson correlation coefficient

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) I 0 = I R F i = 1 n a i e t τ i
τ m = i = 1 n a i τ i i = 1 n a i .
α = N r ¯ 1 + ( N 1 ) r ¯