Abstract

The endocardial to mesenchymal transition (EndMT) that occurs in endocardial cushions during heart development is critical for proper heart septation and formation of the heart’s valves. In EndMT, cells delaminate from the endocardium and migrate into the previously acellular endocardial cushions. Optical coherence tomography (OCT) imaging uses the optical properties of tissues for contrast, and during early development OCT can differentiate cellular versus acellular tissues. Here we show that OCT can be used to non-invasively track EndMT progression in vivo in the outflow tract cushions of chicken embryos. This enables in vivo studies to elucidate factors leading to cardiac malformations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt
J. Opt. Soc. Am. A 25(12) 3134-3143 (2008)

Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins
Opt. Express 15(10) 6251-6267 (2007)

4D shear stress maps of the developing heart using Doppler optical coherence tomography

Lindsy M. Peterson, Michael W. Jenkins, Shi Gu, Lee Barwick, Michiko Watanabe, and Andrew M. Rollins
Biomed. Opt. Express 3(11) 3022-3032 (2012)

References

  • View by:
  • |
  • |
  • |

  1. I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
    [Crossref]
  2. S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
    [Crossref]
  3. M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
    [Crossref]
  4. R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
    [Crossref]
  5. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
    [Crossref]
  6. J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
    [Crossref]
  7. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
    [Crossref]
  8. M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
    [Crossref]
  9. G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
    [Crossref]
  10. L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
    [Crossref]
  11. T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
    [Crossref]
  12. M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
    [Crossref]
  13. K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
    [Crossref]
  14. H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
    [Crossref]
  15. T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.
  16. D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
    [Crossref]
  17. B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
    [Crossref]
  18. A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
    [Crossref]
  19. A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
    [Crossref]
  20. Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
    [Crossref]
  21. H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
    [Crossref]
  22. A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
    [Crossref]
  23. V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
    [Crossref]
  24. M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
    [Crossref]
  25. J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
    [Crossref]
  26. E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
    [Crossref]
  27. L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
    [Crossref]
  28. S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
    [Crossref]
  29. R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
    [Crossref]
  30. V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
    [Crossref]
  31. J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
    [Crossref]
  32. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
    [Crossref]

2019 (1)

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

2018 (5)

R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]

2017 (5)

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

2015 (3)

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

2014 (3)

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

2013 (1)

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

2012 (2)

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]

2011 (1)

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

2010 (1)

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

2009 (1)

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

2008 (2)

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

2007 (2)

2006 (1)

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

2005 (1)

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

2000 (1)

D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]

1992 (1)

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]

Adler, D. C.

Baek, K. I.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Bai, Y.

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Bamezai, S.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Belding, J.

Belhaj, M.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Belting, H.-G.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Bonilla-Claudio, M.

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Boselli, F.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Boudoux, C.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Bouma, B. E.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Brown, J. A.

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

Cai, C.-L.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Camargo, F. D.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Camenisch, T. D.

T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.

Carroll, T. J.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Chang, C.-C.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Charvin, G.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Chen, C.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Chen, J.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Chen, M.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Chivukula, V.

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

Chivukula, V. K.

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

Chou, M. I.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Courchaine, K.

K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]

David, L.

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

Demer, L. L.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Dickinson, M. E.

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

Ding, Y.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Dipette, D. J.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Dorn, C.

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

Doughman, Y. Q.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Duchemin, A.-L.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Duim, S. N.

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

Dvorak, K.

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

Eberth, J.

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

Eberth, J. F.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Engleka, K. A.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Ford, S. M.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Forouhar, A. S.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Frank, D. B.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Fraser, S. E.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Fujimoto, J. G.

Gargesha, M.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]

Garriock, R. J.

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

Gharib, M.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Gittenberger-de Groot, A. C.

R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]

Goddard, L. M.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Goenezen, S.

M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]

Gong, H.

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Goodwin, R.

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

Goumans, M.-J.

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

Gu, S.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

Hamburger, V.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]

Hamilton, H. L.

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]

He, L.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Heckel, E.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Hinds, M.

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

Hsiai, T. K.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Hsu, J. J.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Hu, M.

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Hu, T.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Huang, X.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Huber, R.

Jameson, S. C.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Jenkins, M.

M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]

Jenkins, M. W.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]

Junor, L.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Justice, M. J.

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

Kahn, M. L.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Karunamuni, G.

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Kitten, G. T.

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

Klewer, S. E.

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

Klysik, E.

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Krieg, P. A.

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

Krudewig, A.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Kruithof, B. P. T.

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

Lam, J.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Larin, K. V.

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

Larina, I. V.

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

Lawson, T.

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

Lee, J.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Li, L.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Liebling, M.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Linask, K. K.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Liu, A.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

Liu, Q.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

López, C. S.

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

Lyu, X.

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Ma, P.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Mai, K.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Maloyan, A.

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

Manner, J.

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

Markwald, R. R.

T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.

Marsden, A. L.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Martin, J. F.

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

McHale, Q.

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

McPheeters, M. T.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Menon, V.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

Mercado-Pimentel, M. E.

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

Midgett, M.

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]

Moerkamp, A. T.

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

Morikawa, Y.

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Morley, M. P.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Morrisey, E. E.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Norozi, K.

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

Oh, W. Y.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Olson, E. N.

D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]

Person, A. D.

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

Peterson, L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

Peterson, L. M.

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Plummer, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Poelmann, R. E.

R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]

Potts, A. J.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Potts, J.

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

Potts, J. D.

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

Pu, W.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Pu, W. T.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Ramalingan, H.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Rollins, A.

M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]

Rollins, A. M.

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]

Roth, S.

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Rothenberg, F.

Rugonyi, S.

K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

Runyan, R. B.

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.

Rykiel, G.

K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]

Scherrer-Crosbie, M.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Scott-Drechsel, D.

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

Shaut, C.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

Snyder, C.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Srivastava, D.

D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]

Strainic, J.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Subhedar, S.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Tavares, A. L. P.

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

Tearney, G. J.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Thornburg, K.

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

Thrane, L.

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

Tian, X.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Tintut, Y.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Ulrich, E. C.

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

Vakoc, B. J.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Vedula, V.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Vermot, J.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

von Gise, A.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Wallace, S.

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

Wang, J.

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Wang, Q.

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Wang, R. K.

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

Wang, T.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Wang, Y. T.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Watanabe, M.

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

L. M. Peterson, S. Gu, G. Karunamuni, M. W. Jenkins, M. Watanabe, and A. M. Rollins, “Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited],” Biomed. Opt. Express 8(3), 1823–1837 (2017).
[Crossref]

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]

Wilson, D. L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered fourier domain mode locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[Crossref]

Wu, B.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Wu, D.

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Yang, J.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Yelbuz, T. M.

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

Yelin, D.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Yelin, R.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Yun, S. H.

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

Zhang, H.

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

Zhang, X.

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Zhou, B.

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

American Journal of Physiology-Heart and Circulatory Physiology (1)

G. Karunamuni, S. Gu, Y. Q. Doughman, L. M. Peterson, K. Mai, Q. McHale, M. W. Jenkins, K. K. Linask, A. M. Rollins, and M. Watanabe, “Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?” American Journal of Physiology-Heart and Circulatory Physiology 306(3), H414–H421 (2014).
[Crossref]

Biomed. Opt. Express (1)

Congenital Heart Disease (1)

S. M. Ford, M. T. McPheeters, Y. T. Wang, P. Ma, S. Gu, J. Strainic, C. Snyder, A. M. Rollins, M. Watanabe, and M. W. Jenkins, “Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease,” Congenital Heart Disease 12(3), 322–331 (2017).
[Crossref]

Curr. Biol. (1)

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H.-G. Belting, G. Charvin, and J. Vermot, “Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development,” Curr. Biol. 25(10), 1354–1361 (2015).
[Crossref]

Curr. Opin. Genet. Dev. (1)

I. V. Larina, K. V. Larin, M. J. Justice, and M. E. Dickinson, “Optical Coherence Tomography for live imaging of mammalian development,” Curr. Opin. Genet. Dev. 21(5), 579–584 (2011).
[Crossref]

Dev. Biol. (Amsterdam, Neth.) (1)

A. D. Person, R. J. Garriock, P. A. Krieg, R. B. Runyan, and S. E. Klewer, “Frzb modulates Wnt-9a-mediated β-catenin signaling during avian atrioventricular cardiac cushion development,” Dev. Biol. (Amsterdam, Neth.) 278(1), 35–48 (2005).
[Crossref]

Dev. Cell (1)

L. M. Goddard, A.-L. Duchemin, H. Ramalingan, B. Wu, M. Chen, S. Bamezai, J. Yang, L. Li, M. P. Morley, T. Wang, M. Scherrer-Crosbie, D. B. Frank, K. A. Engleka, S. C. Jameson, E. E. Morrisey, T. J. Carroll, B. Zhou, J. Vermot, and M. L. Kahn, “Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis,” Dev. Cell 43(3), 274–289.e5 (2017).
[Crossref]

Dev. Dyn. (5)

A. L. P. Tavares, J. A. Brown, E. C. Ulrich, K. Dvorak, and R. B. Runyan, “RUNX2-I is an early regulator of epithelial-mesenchymal cell transition in the chick embryo,” Dev. Dyn. 247(3), 542–554 (2018).
[Crossref]

V. Menon, J. F. Eberth, L. Junor, A. J. Potts, M. Belhaj, D. J. Dipette, M. W. Jenkins, and J. D. Potts, “Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics,” Dev. Dyn. 247(3), 531–541 (2018).
[Crossref]

A. L. P. Tavares, M. E. Mercado-Pimentel, R. B. Runyan, and G. T. Kitten, “TGFβ-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart,” Dev. Dyn. 235(6), 1589–1598 (2006).
[Crossref]

V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” Dev. Dyn. 195(4), 231–272 (1992).
[Crossref]

J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237(4), 953–961 (2008).
[Crossref]

Development (Cambridge, U. K.) (1)

Y. Bai, J. Wang, Y. Morikawa, M. Bonilla-Claudio, E. Klysik, and J. F. Martin, “Bmp signaling represses Vegfa to promote outflow tract cushion development,” Development (Cambridge, U. K.) 140(16), 3395–3402 (2013).
[Crossref]

Differentiation (Oxford, U. K.) (1)

B. P. T. Kruithof, S. N. Duim, A. T. Moerkamp, and M.-J. Goumans, “TGFβ and BMP signaling in cardiac cushion formation: Lessons from mice and chicken,” Differentiation (Oxford, U. K.) 84(1), 89–102 (2012).
[Crossref]

Front. Physiol. (1)

M. Midgett, C. S. López, L. David, A. Maloyan, and S. Rugonyi, “Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition,” Front. Physiol. 8, 56 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Jenkins, M. Watanabe, and A. Rollins, “Longitudinal imaging of heart development with optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1166–1175 (2012).
[Crossref]

J. Biol. Chem. (1)

H. Zhang, A. von Gise, Q. Liu, T. Hu, X. Tian, L. He, W. Pu, X. Huang, L. He, C.-L. Cai, F. D. Camargo, W. T. Pu, and B. Zhou, “Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion,” J. Biol. Chem. 289(27), 18681–18692 (2014).
[Crossref]

J. Biomed. Opt. (2)

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010).
[Crossref]

R. Yelin, D. Yelin, W. Y. Oh, S. H. Yun, C. Boudoux, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Multimodality optical imaging of embryonic heart microstructure,” J. Biomed. Opt. 12(6), 064021 (2007).
[Crossref]

J. Cardiovasc. Dev. Dis. (3)

T. Lawson, D. Scott-Drechsel, V. Chivukula, S. Rugonyi, K. Thornburg, and M. Hinds, “Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart,” J. Cardiovasc. Dev. Dis. 5(1), 13 (2018).
[Crossref]

V. Menon, J. Eberth, R. Goodwin, and J. Potts, “Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development,” J. Cardiovasc. Dev. Dis. 2(2), 108–124 (2015).
[Crossref]

R. E. Poelmann and A. C. Gittenberger-de Groot, “Hemodynamics in Cardiac Development,” J. Cardiovasc. Dev. Dis. 5(4), 54 (2018).
[Crossref]

J. R. Soc., Interface (2)

M. Midgett, S. Goenezen, and S. Rugonyi, “Blood flow dynamics reflect degree of outflow tract banding in Hamburger-Hamilton stage 18 chicken embryos,” J. R. Soc., Interface 11(100), 20140643 (2014).
[Crossref]

M. Midgett, V. K. Chivukula, C. Dorn, S. Wallace, and S. Rugonyi, “Blood flow through the embryonic heart outflow tract during cardiac looping in HH13–HH18 chicken embryos,” J. R. Soc., Interface 12(111), 20150652 (2015).
[Crossref]

JCI Insight (1)

J. J. Hsu, V. Vedula, K. I. Baek, C. Chen, J. Chen, M. I. Chou, J. Lam, S. Subhedar, J. Wang, Y. Ding, C.-C. Chang, J. Lee, L. L. Demer, Y. Tintut, A. L. Marsden, and T. K. Hsiai, “Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation,” JCI Insight 4(10), e124460 (2019).
[Crossref]

Life Sci. (1)

H. Gong, X. Lyu, Q. Wang, M. Hu, and X. Zhang, “Endothelial to mesenchymal transition in the cardiovascular system,” Life Sci. 184, 95–102 (2017).
[Crossref]

Nature (1)

D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature 407(6801), 221–226 (2000).
[Crossref]

Opt. Express (1)

Phys. Med. Biol. (1)

S. Rugonyi, C. Shaut, A. Liu, K. Thornburg, and R. K. Wang, “Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation,” Phys. Med. Biol. 53(18), 5077–5091 (2008).
[Crossref]

PLoS Biol. (1)

J. Vermot, A. S. Forouhar, M. Liebling, D. Wu, D. Plummer, M. Gharib, and S. E. Fraser, “Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart,” PLoS Biol. 7(11), e1000246 (2009).
[Crossref]

Prog. Biophys. Mol. Biol. (1)

K. Courchaine, G. Rykiel, and S. Rugonyi, “Influence of blood flow on cardiac development,” Prog. Biophys. Mol. Biol. 137, 95–110 (2018).
[Crossref]

Other (1)

T. D. Camenisch, R. B. Runyan, and R. R. Markwald, “Molecular Regulation of Cushion Morphogenesis,” Chapter 6.1 in Heart Development and Regeneration (Academic Press, 2010) pp. 363–387.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Embryonic chick outflow tract cushions visualized using OCT. The same embryonic outflow tract was imaged and shown here at HH16 and HH20. Endocardial cushions are clearly delineated by visible endocardial (green arrow) and myocardial (yellow arrow) layers. Please note that at HH16 the cushions have almost no cells, while at HH20 there is a significant increase in cushion cell density. E: endocardium; M: myocardium; CJ: cardiac jelly (endocardial cushions); V: ventricle. Scale bar = 200 µm.
Fig. 2.
Fig. 2. Semi-automatic cell/blob counting in an HH18 embryo. A) The area of interest (upper OFT cushion) is manually selected (outlined) by the user. B) The selected area is binarized and MATLAB’s Blob Analysis function is used to identify individual cells. C) Counted cells/blobs are shown circled on the original OCT image. Cell counts over the developmental stages considered ranged from about 50 to 500 in the cushion area imaged. Scale bar = 170 µm.
Fig. 3.
Fig. 3. Quantification of cells per unit area over time in the outflow tract cushions of chicken embryos. Individual data and trend lines are shown for 7 normal embryos for the period during which EndMT is progressing. Data points and trend lines are color-coded by embryo. HH13 refers to Hamburger-Hamilton stage 13, which corresponds to about 2 days of incubation.

Tables (1)

Tables Icon

Table 1. Embryo statistics for cushion cell density measurements during EndMT period. Time points considered were >15 hours past HH13. Number of cushion cell density data points, R2 value of linear regression of cell density versus time, and slope of linear trend lines. Only embryos that had 8 or more measurements during the EndMT period were included.

Metrics