B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
R. A. Alexander, “A note on averaging correlations,” Bull. Psychon. Soc. 28(4), 335–336 (1990).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
J. Bai, T. L. H. Trinh, K.-H. Chuang, and A. Qiu, “Atlas-based automatic mouse brain image segmentation revisited: model complexity vs imaging registration,” Magn. Reson. Imaging 30(6), 789–798 (2012).
[Crossref]
M. P. Vanni, A. W. Chen, M. Balbi, G. Silasi, and T. H. Murphy, “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
M. J. Quattromani, J. Hakon, U. Rauch, A. Q. Bauer, and T. Wieloch, “Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components,” Neurobiol. Dis. 112, 91–105 (2018).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
G. Silasi, D. Xiao, M. P. Vanni, A. C. N. Chen, and T. H. Murphy, “Intact skull chronic windows for mesoscopic wide-field imaging in awake mice,” J. Neurosci. Methods 267, 141–149 (2016).
[Crossref]
M. P. Vanni, A. W. Chen, M. Balbi, G. Silasi, and T. H. Murphy, “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).
[Crossref]
Z. Li, Y. Zhu, A. Childress, J. Detre, and Z. Wang, “Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow,” PLoS One 7(9), e44556 (2012).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
J. Bai, T. L. H. Trinh, K.-H. Chuang, and A. Qiu, “Atlas-based automatic mouse brain image segmentation revisited: model complexity vs imaging registration,” Magn. Reson. Imaging 30(6), 789–798 (2012).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” NeuroImage 85, 117–126 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
Z. Li, Y. Zhu, A. Childress, J. Detre, and Z. Wang, “Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow,” PLoS One 7(9), e44556 (2012).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
N. C. Silver and W. P. Dunlap, “Averaging correlation coefficients: should Fisher’s $z$z transformation be used?” J. App. Psychol. 72(1), 146–148 (1987).
[Crossref]
S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” NeuroImage 85, 117–126 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” NeuroImage 85, 117–126 (2014).
[Crossref]
X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Quantitative evaluation of atlas-based high-density diffuse optical tomography for imaging of the human visual cortex,” Biomed. Opt. Express 5(11), 3882–3900 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front. Syst. Neurosci. 4, 19 (2010).
[Crossref]
M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
M. D. Fox and M. Greicius, “Clinical applications of resting state functional connectivity,” Front. Syst. Neurosci. 4, 19 (2010).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
M. J. Quattromani, J. Hakon, U. Rauch, A. Q. Bauer, and T. Wieloch, “Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components,” Neurobiol. Dis. 112, 91–105 (2018).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” NeuroImage 85, 117–126 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage 22(1), 394–400 (2004).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage 22(1), 394–400 (2004).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
Z. Li, Y. Zhu, A. Childress, J. Detre, and Z. Wang, “Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow,” PLoS One 7(9), e44556 (2012).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage 22(1), 394–400 (2004).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online resource for validation of brain segmentation methods,” NeuroImage 45(2), 431–439 (2009).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
M. P. Vanni, A. W. Chen, M. Balbi, G. Silasi, and T. H. Murphy, “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).
[Crossref]
G. Silasi, D. Xiao, M. P. Vanni, A. C. N. Chen, and T. H. Murphy, “Intact skull chronic windows for mesoscopic wide-field imaging in awake mice,” J. Neurosci. Methods 267, 141–149 (2016).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
M. P. Vanni and T. H. Murphy, “Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex,” J. Neurosci. 34(48), 15931–15946 (2014).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online resource for validation of brain segmentation methods,” NeuroImage 45(2), 431–439 (2009).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
J. Power, B. Schlaggar, and S. Petersen, “Recent progress and outstanding issues in motion correction in resting state fMRI,” NeuroImage 105, 536–551 (2015).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
J. Power, B. Schlaggar, and S. Petersen, “Recent progress and outstanding issues in motion correction in resting state fMRI,” NeuroImage 105, 536–551 (2015).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online resource for validation of brain segmentation methods,” NeuroImage 45(2), 431–439 (2009).
[Crossref]
J. Bai, T. L. H. Trinh, K.-H. Chuang, and A. Qiu, “Atlas-based automatic mouse brain image segmentation revisited: model complexity vs imaging registration,” Magn. Reson. Imaging 30(6), 789–798 (2012).
[Crossref]
M. J. Quattromani, J. Hakon, U. Rauch, A. Q. Bauer, and T. Wieloch, “Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components,” Neurobiol. Dis. 112, 91–105 (2018).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nat. Rev. Neurosci. 8(9), 700–711 (2007).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
M. J. Quattromani, J. Hakon, U. Rauch, A. Q. Bauer, and T. Wieloch, “Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components,” Neurobiol. Dis. 112, 91–105 (2018).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
M. Gorges, F. Roselli, H.-P. Muller, A. C. Ludolph, V. Rasche, and J. Kassubek, “Functional connectivity mapping in the animal model: principles and applications of resting-state fMRI,” Front. Neurol. 8, 200 (2017).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
J. Power, B. Schlaggar, and S. Petersen, “Recent progress and outstanding issues in motion correction in resting state fMRI,” NeuroImage 105, 536–551 (2015).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online resource for validation of brain segmentation methods,” NeuroImage 45(2), 431–439 (2009).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
M. P. Vanni, A. W. Chen, M. Balbi, G. Silasi, and T. H. Murphy, “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).
[Crossref]
G. Silasi, D. Xiao, M. P. Vanni, A. C. N. Chen, and T. H. Murphy, “Intact skull chronic windows for mesoscopic wide-field imaging in awake mice,” J. Neurosci. Methods 267, 141–149 (2016).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
N. C. Silver and W. P. Dunlap, “Averaging correlation coefficients: should Fisher’s $z$z transformation be used?” J. App. Psychol. 72(1), 146–148 (1987).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen, “Methods to detect, characterize, and remove motion artifact in resting state fMRI,” NeuroImage 84, 320–341 (2014).
[Crossref]
S. L. Ferradal, A. T. Eggebrecht, M. Hassanpour, A. Z. Snyder, and J. P. Culver, “Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI,” NeuroImage 85, 117–126 (2014).
[Crossref]
A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage 22(1), 394–400 (2004).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online resource for validation of brain segmentation methods,” NeuroImage 45(2), 431–439 (2009).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
J. Bai, T. L. H. Trinh, K.-H. Chuang, and A. Qiu, “Atlas-based automatic mouse brain image segmentation revisited: model complexity vs imaging registration,” Magn. Reson. Imaging 30(6), 789–798 (2012).
[Crossref]
B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, and A. M. Dale, “Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain,” Neuron 33(3), 341–355 (2002).
[Crossref]
M. P. Vanni, A. W. Chen, M. Balbi, G. Silasi, and T. H. Murphy, “Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules,” J. Neurosci. 37(31), 7513–7533 (2017).
[Crossref]
G. Silasi, D. Xiao, M. P. Vanni, A. C. N. Chen, and T. H. Murphy, “Intact skull chronic windows for mesoscopic wide-field imaging in awake mice,” J. Neurosci. Methods 267, 141–149 (2016).
[Crossref]
T. H. Murphy, J. D. Boyd, F. Bolanos, M. P. Vanni, G. Silasi, D. Haupt, and J. M. LeDue, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Nat. Commun. 7(1), 11611 (2016).
[Crossref]
M. P. Vanni and T. H. Murphy, “Mesoscale transcranial spontaneous activity mapping in GCaMP3 transgenic mice reveals extensive reciprocal connections between areas of somatomotor cortex,” J. Neurosci. 34(48), 15931–15946 (2014).
[Crossref]
J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church, B. L. Schlaggar, and S. E. Petersen, “Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points,” Hum. Brain Mapp. 35(5), 1981–1996 (2014).
[Crossref]
M. H. Mohajerani, A. W. Chan, M. Mohsenvand, J. LeDue, R. Liu, D. A. McVea, J. D. Boyd, Y. T. Wang, M. Reimers, and T. H. Murphy, “Spontaneous cortical activity alternates between motifs defined by regional axonal projections,” Nat. Neurosci. 16(10), 1426–1435 (2013).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
Z. Li, Y. Zhu, A. Childress, J. Detre, and Z. Wang, “Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow,” PLoS One 7(9), e44556 (2012).
[Crossref]
A. W. Bero, A. Q. Bauer, F. R. Stewart, B. R. White, J. R. Cirrito, M. E. Raichle, J. P. Culver, and D. M. Holtzman, “Bidirectional relationship between functional connectivity and amyloid-$\beta$β deposition in mouse brain,” J. Neurosci. 32(13), 4334–4340 (2012).
[Crossref]
B. R. White, A. Q. Bauer, A. Z. Snyder, B. L. Schlaggar, J.-M. Lee, and J. P. Culver, “Imaging of functional connectivity in the mouse brain,” PLoS One 6(1), e16322 (2011).
[Crossref]
M. J. Quattromani, J. Hakon, U. Rauch, A. Q. Bauer, and T. Wieloch, “Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components,” Neurobiol. Dis. 112, 91–105 (2018).
[Crossref]
T. Satterthwaite, D. Wolf, J. Loughead, K. Ruparel, M. Elliott, H. Hakonarson, R. Gur, and R. Gur, “Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth,” NeuroImage 60(1), 623–632 (2012).
[Crossref]
D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga, “A meta-algorithm for brain extraction in MRI,” NeuroImage 23(2), 625–637 (2004).
[Crossref]
L. Brier, E. Landsness, A. Snyder, P. Wright, G. Baxter, A. Bauer, J.-M. Lee, and J. Culver, “Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia,” Neurophotonics 6(03), 1 (2019).
[Crossref]
A. Q. Bauer, A. W. Kraft, G. A. Baxter, P. W. Wright, M. D. Reisman, A. R. Bice, J. J. Park, M. R. Bruchas, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Effective connectivity measured using optogenetically evoked hemodynamics signals exhibits topography distinct from resting state functional connectivity in the mouse,” Cereb. Cortex 28(1), 370–386 (2018).
[Crossref]
P. W. Wright, L. M. Brier, A. Q. Bauer, G. A. Baxter, A. W. Kraft, M. D. Reisman, A. R. Bice, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice,” PLoS One 12(10), e0185759 (2017).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
A. Q. Bauer, A. W. Kraft, P. W. Wright, A. Z. Snyder, J.-M. Lee, and J. P. Culver, “Optical imaging of disrupted functional connectivity following ischemic stroke in mice,” NeuroImage 99, 388–401 (2014).
[Crossref]
P. W. Wright, A. S. Archambault, S. Peek, A. Q. Bauer, S. M. Culican, B. M. Ances, J. P. Culver, and G. F. Wu, “Functional connectivity alterations in a murine model of optic neuritis,” Exp. Neurol. 295, 18–22 (2017).
[Crossref]
G. Silasi, D. Xiao, M. P. Vanni, A. C. N. Chen, and T. H. Murphy, “Intact skull chronic windows for mesoscopic wide-field imaging in awake mice,” J. Neurosci. Methods 267, 141–149 (2016).
[Crossref]
S. Kura, H. Xie, B. Fu, C. Ayata, D. A. Boas, and S. Sakadzic, “Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex,” J. Neural. Eng. 15(3), 035003 (2018).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
K.-H. Chuang, H. Lee, Z. Li, W.-T. Chang, F. Nasrallah, L. Yeow, and K. Singh, “Evaluation of nuisance removal for functional MRI of rodent brain,” NeuroImage 188, 694–709 (2019).
[Crossref]
R. Yuan, X. Di, E. Kim, S. Barik, B. Rypma, and B. Biswal, “Regional homogeneity of resting-state fMRI contributes to both neurovascular and task activation variations,” Magn. Reson. Imaging 31(9), 1492–1500 (2013).
[Crossref]
Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage 22(1), 394–400 (2004).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
Y.-F. Zang, Y. He, C.-Z. Zhu, Q.-J. Cao, M.-Q. Sui, M. Liang, L.-X. Tian, T.-Z. Jiang, and Y.-F. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain Dev. 29(2), 83–91 (2007).
[Crossref]
Z. Li, Y. Zhu, A. Childress, J. Detre, and Z. Wang, “Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow,” PLoS One 7(9), e44556 (2012).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]
Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” J. Neurosci. Methods 172(1), 137–141 (2008).
[Crossref]