Abstract

Imaging parameters of photoacoustic breast imaging systems such as the spatial resolution and imaging depth are often characterized with phantoms. These objects usually contain simple structures in homogeneous media such as absorbing wires or spherical objects in scattering gels. While these kinds of basic phantoms are uncluttered and useful, they do not challenge the system as much as a breast does, and can thereby overestimate the system’s performance. The female breast is a complex collection of tissue types, and the acoustic and optical attenuation of these tissues limit the imaging depth, the resolution and the ability to extract quantitative information. For testing and challenging photoacoustic breast imaging systems to the full extent before moving to in vivo studies, a complex breast phantom which simulates the breast’s most prevalent tissues is required. In this work we present the first three dimensional multi-layered semi-anthropomorphic photoacoustic breast phantom. The phantom aims to simulate skin, fat, fibroglandular tissue and blood vessels. The latter three are made from custom polyvinyl chloride plastisol (PVCP) formulations and are appropriately doped with additives to obtain tissue realistic acoustic and optical properties. Two tumors are embedded, which are modeled as clusters of small blood vessels. The PVCP materials are surrounded by a silicon layer mimicking the skin. The tissue mimicking materials were cast into the shapes and sizes expected in the breast using 3D-printed moulds developed from a magnetic resonance imaging segmented numerical breast model. The various structures and layers were assembled to obtain a realistic breast morphology. We demonstrate the phantom’s appearance in both ultrasound imaging as photoacoustic tomography and make a comparison with a photoacoustic image of a real breast. A good correspondence is observed, which confirms the phantom’s usefulness.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic blood flow phantom with negative and positive photoacoustic contrasts

Hind J. Jawad, Mustafa Sarimollaoglu, Alexandru S. Biris, and Vladimir P. Zharov
Biomed. Opt. Express 9(10) 4702-4713 (2018)

Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging

Efthymios Maneas, Wenfeng Xia, Olumide Ogunlade, Martina Fonseca, Daniil I. Nikitichev, Anna L. David, Simeon J. West, Sebastien Ourselin, Jeremy C. Hebden, Tom Vercauteren, and Adrien E. Desjardins
Biomed. Opt. Express 9(3) 1151-1163 (2018)

Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging

Jason R. Cook, Richard R. Bouchard, and Stanislav Y. Emelianov
Biomed. Opt. Express 2(11) 3193-3206 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
    [Crossref]
  2. A. Tingberg, “X-ray tomosynthesis: a review of its use for breast and chest imaging,” Radiat. Prot. Dosim. 139(1-3), 100–107 (2010).
    [Crossref]
  3. W. A. Berg, “Supplemental screening sonography in dense breasts,” Radiol. Clin. 42(5), 845–851 (2004).
    [Crossref]
  4. M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
    [Crossref]
  5. R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
    [Crossref]
  6. M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
    [Crossref]
  7. L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
    [Crossref]
  8. S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).
  9. M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
    [Crossref]
  10. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref]
  11. L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
    [Crossref]
  12. S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
    [Crossref]
  13. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144(5), 646–674 (2011).
    [Crossref]
  14. M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics (2018).
  15. B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
    [Crossref]
  16. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
    [Crossref]
  17. P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature 473(7347), 298–307 (2011).
    [Crossref]
  18. G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
    [Crossref]
  19. E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
    [Crossref]
  20. G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
    [Crossref]
  21. A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
    [Crossref]
  22. M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
    [Crossref]
  23. Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
    [Crossref]
  24. A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.
  25. S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics (2019).
    [Crossref]
  26. W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
    [Crossref]
  27. E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
    [Crossref]
  28. C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
    [Crossref]
  29. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
    [Crossref]
  30. A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
    [Crossref]
  31. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
    [Crossref]
  32. K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
    [Crossref]
  33. M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
    [Crossref]
  34. E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
    [Crossref]
  35. E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
    [Crossref]
  36. J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
    [Crossref]
  37. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
    [Crossref]
  38. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
    [Crossref]
  39. N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
    [Crossref]
  40. A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
    [Crossref]
  41. A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
    [Crossref]
  42. Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3d-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
    [Crossref]
  43. E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.
  44. M. Dantuma, R. C. van Dommelen, and S. Manohar, “A 3d semi-anthropomorphic photoacoustic breast phantom,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p. 108781P.
  45. J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).
  46. J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).
  47. K. L. Bontrager and J. Lampignano, Textbook of Radiographic Positioning and Related Anatomy-e-Book (Elsevier Health Sciences, 2013).
  48. Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
    [Crossref]
  49. M. Dantuma, “Three-dimensional model for the breast contour mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911747 .
  50. M. Dantuma, “Three-dimensional model for the fibroglandular-fat interface mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911750 .
  51. M. Dantuma, “Three-dimensional blood vessel model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911753 .
  52. M. Dantuma, “Top part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911756 .
  53. M. Dantuma, “Bottom part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911759 .
  54. W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
    [Crossref]
  55. M. Dantuma, “Three-dimensional model of an acoustic characterization block mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911762 .
  56. M. Dantuma, “Three-dimensional model of an acoustic characterization block holder,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911765 .
  57. T. L. Szabo, in Diagnostic Ultrasound Imaging: Inside Out (Academic Press, 2004), pp. 785–786.
  58. S. Prahl, “Optical property measurements using the inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital 9205 (1999).
  59. Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).
  60. P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
    [Crossref]
  61. F. T. d’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Medicine & Biol. 12(10), 795–808 (1986).
    [Crossref]
  62. L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
    [Crossref]
  63. F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, 2013).
  64. S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.
  65. J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. BME-28(2), 177–185 (1981).
    [Crossref]
  66. C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
    [Crossref]
  67. H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
    [Crossref]
  68. B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).
  69. A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
    [Crossref]
  70. J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
    [Crossref]
  71. H. Azhari, Basics of Biomedical Ultrasound for Engineers (John Wiley & Sons, 2010).
  72. K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC press, 2015).
  73. S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
    [Crossref]
  74. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
    [Crossref]
  75. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
    [Crossref]
  76. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
    [Crossref]
  77. V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
    [Crossref]
  78. P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
    [Crossref]
  79. S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

2019 (2)

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
[Crossref]

2018 (7)

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3d-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

2017 (5)

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

2016 (5)

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

2015 (3)

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref]

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

2014 (1)

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref]

2013 (2)

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

2012 (4)

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

2011 (9)

J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express 2(11), 3193–3206 (2011).
[Crossref]

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature 473(7347), 298–307 (2011).
[Crossref]

M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
[Crossref]

R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
[Crossref]

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144(5), 646–674 (2011).
[Crossref]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

2010 (1)

A. Tingberg, “X-ray tomosynthesis: a review of its use for breast and chest imaging,” Radiat. Prot. Dosim. 139(1-3), 100–107 (2010).
[Crossref]

2009 (2)

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

2007 (1)

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

2005 (1)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

2004 (2)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

W. A. Berg, “Supplemental screening sonography in dense breasts,” Radiol. Clin. 42(5), 845–851 (2004).
[Crossref]

2003 (1)

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

2000 (1)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]

1998 (1)

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

1996 (1)

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
[Crossref]

1991 (1)

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

1990 (1)

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

1989 (1)

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

1986 (2)

F. T. d’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Medicine & Biol. 12(10), 795–808 (1986).
[Crossref]

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

1984 (1)

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

1981 (1)

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. BME-28(2), 177–185 (1981).
[Crossref]

1979 (1)

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Abbate, F.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Alink, L.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

Anastasio, M.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Anastasio, M. A.

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

Andrejeva, L.

R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
[Crossref]

Andriani, R.

Appleton, C. M.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

Arridge, S. R.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Asao, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Azhari, H.

H. Azhari, Basics of Biomedical Ultrasound for Engineers (John Wiley & Sons, 2010).

Bahn, R.

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Bahn, R. C.

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. BME-28(2), 177–185 (1981).
[Crossref]

Bakic, P.

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

Balestreri, N.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Barke, L. D.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Barth, P. J.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Bastard, C.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Beard, P.

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref]

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

Beard, P. C.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Becker, A.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Beix, V.

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

Belgam, R. A.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Berg, W. A.

W. A. Berg, “Supplemental screening sonography in dense breasts,” Radiol. Clin. 42(5), 845–851 (2004).
[Crossref]

Berggren, M.

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

Bertrand, M. L.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Bhadra, S.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Bisschops, R.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Böhm-Vélez, M.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Bolt, R. A.

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

Bontrager, K. L.

K. L. Bontrager and J. Lampignano, Textbook of Radiographic Positioning and Related Anatomy-e-Book (Elsevier Health Sciences, 2013).

Bookstein, F. L.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Borup, D.

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

Bouchard, R. R.

Brenbridge, A.

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

Brooksby, B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Burg, M.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Burriesci, G.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Buschi, A. J.

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

Butler, R.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Capelli, C.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Carmeliet, P.

P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature 473(7347), 298–307 (2011).
[Crossref]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]

Carr, E.

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Carson, P. L.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Carton, A.

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

Cassano, E.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Catenacci, M.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Chang, C.-W.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Chen, Y.

Claussen, J.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Cook, J. R.

Cox, B.

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref]

Cox, B. T.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Cubeddu, R.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

d’Astous, F. T.

F. T. d’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Medicine & Biol. 12(10), 795–808 (1986).
[Crossref]

Daher, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Dantuma, M.

M. Dantuma, R. C. van Dommelen, and S. Manohar, “A 3d semi-anthropomorphic photoacoustic breast phantom,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p. 108781P.

M. Dantuma, “Three-dimensional model for the breast contour mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911747 .

M. Dantuma, “Three-dimensional model for the fibroglandular-fat interface mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911750 .

M. Dantuma, “Three-dimensional blood vessel model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911753 .

M. Dantuma, “Top part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911756 .

M. Dantuma, “Bottom part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911759 .

M. Dantuma, “Three-dimensional model of an acoustic characterization block mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911762 .

M. Dantuma, “Three-dimensional model of an acoustic characterization block holder,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911765 .

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics (2019).
[Crossref]

David, A. L.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

Dawes, D.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

de Mul, F. F.

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

Dehghani, H.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Del Rio, S. P.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Depkon, A.

Derand, H.

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

Desjardins, A. E.

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Destounis, S.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Diot, G.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Dogan, B. E.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Donlan, P.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Doyley, M.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Duck, F. A.

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, 2013).

Duric, N.

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

Edmonds, P.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Eisenblätter, M.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Emelianov, S. Y.

Endo, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Fakhrejahani, E.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Finlay, M. C.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Fonseca, M.

Ford, S. J.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Forte, L.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Foster, F. S.

F. T. d’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Medicine & Biol. 12(10), 795–808 (1986).
[Crossref]

Frank, G.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

Fukutani, K.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Garra, B. S.

W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Gehm, M. E.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Ghassemi, P.

Greenleaf, J.

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Greenleaf, J. F.

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. BME-28(2), 177–185 (1981).
[Crossref]

Grobmyer, S. R.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Haisch, C.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

Hall, T. J.

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

Hanahan, D.

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144(5), 646–674 (2011).
[Crossref]

Harris, J. R.

J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).

Hashizume, Y.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Hebden, J. C.

Heijblom, M.

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

Heindel, W.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Hill, J.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Holland, S.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Hooley, R. J.

R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
[Crossref]

Hu, P.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Huang, L.

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

Huijink, R.

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Hungr, N.

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

Iacono, M. I.

Jacques, S. L.

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref]

Jain, R. K.

P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature 473(7347), 298–307 (2011).
[Crossref]

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]

Jensen, J.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Jeong, E.-J.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Jia, C.

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Jiang, S.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Jie, T.

S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.

Johnson, S.

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Kanao, S.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Kataoka, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Katzen, J.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Kawaguchi-Sakita, N.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Kawashima, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Kharine, A.

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

Kikinis, R.

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

Kim, B. K.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Kist, K. A.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Klaase, J.

Klazen, C. A.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Knudsen, J. E.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Kobayashi, S.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Kobold, W. F. M.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Kogel, C.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Kolkman, R. G.

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

Kruger, R. A.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Kuzmiak, C. M.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Lam, R. B.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Lampignano, J.

K. L. Bontrager and J. Lampignano, Textbook of Radiographic Positioning and Related Anatomy-e-Book (Elsevier Health Sciences, 2013).

Landini, L.

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Laufer, J. G.

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Lavin, P. T.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Lee, R.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Lee, S. S.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Lee, Y.-J.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Li, C.

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

Li, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Li, M.

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics (2018).

Liapis, E.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Lin, J.

Lin, L.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Lippman, M. E.

J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).

Little, C.

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Littrup, P.

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

Liu, Y.

Lo, J. Y.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Long, J.-A.

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

Lou, Y.

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Mackle, E. C.

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Maidment, A. D.

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

Makariou, E. V.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Maneas, E.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Manimaran, M.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Mann, R. M.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Manohar, S.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref]

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics (2019).
[Crossref]

M. Dantuma, R. C. van Dommelen, and S. Manohar, “A 3d semi-anthropomorphic photoacoustic breast phantom,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p. 108781P.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Marzoni, F.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Masae, T.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Maslov, K.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Masthoff, M.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Matsumoto, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Matsushita, T.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Matthews, T. P.

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

Medsker, T.

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

Meeuwis, C.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Meier, R.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Mendoza, G.

Menezes, G. L.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Menna, S.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Metz, S.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Meyer, C. R.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Miette, V.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Moore, J.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Morris, E.

M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
[Crossref]

Morrow, M.

M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
[Crossref]

J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).

Mortensen, C.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Muller Kobold, W. F.

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

Nagae, K.-I.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Nakajima, S.

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

Nakayama, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Nasief, H. G.

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

Neuschler, E. I.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Nguyen, H.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Niessner, R.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

Nikitichev, D.

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Nikitichev, D. I.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

Noske, A.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Ntziachristos, V.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Ogunlade, O.

op’t Root, T. J.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

op’t Root, Tim J. P. M.

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

Oraevsky, A.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

Osborne, C. K.

J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).

Oudry, J.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Ourselin, S.

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Ovsepian, S. V.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Page, D. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
[Crossref]

Park, S. J.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Parris, T. M.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Patterson, M.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

Paulsen, K. D.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Peters, V. G.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

Pfefer, T. J.

W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
[Crossref]

Y. Liu, P. Ghassemi, A. Depkon, M. I. Iacono, J. Lin, G. Mendoza, J. Wang, Q. Tang, Y. Chen, and T. J. Pfefer, “Biomimetic 3d-printed neurovascular phantoms for near-infrared fluorescence imaging,” Biomed. Opt. Express 9(6), 2810–2824 (2018).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Pifferi, A.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Pijnappel, R. M.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Piras, D.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Pogue, B. W.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Pope, J. T. L.

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

Poplack, S. P.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Prahl, S.

S. Prahl, “Optical property measurements using the inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital 9205 (1999).

Quarto, G.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Rahmani, B.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Rajagopalan, B.

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Rakhit, R. D.

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Razansky, D.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Read, M. E.

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

Reinecke, D. R.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Roll, W.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Rosado-Mendez, I. M.

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

Rossman, A. H.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Rummeny, E.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Sakurai, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Samei, E.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Sandrin, L.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Sarnelli, R.

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Sato, Y.

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

Schäfers, M.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Schattner, P.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Scherzinger, A. L.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Schievano, S.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Schilling, K. J.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Schoustra, S. M.

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Schroeder, B.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Scoutt, L. M.

R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
[Crossref]

Seeton, R.

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

Sekiguchi, H.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
[Crossref]

Shi, J.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Shiina, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Shiraga, N.

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

Shung, K. K.

K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC press, 2015).

Sikaria, D.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Silver, T. M.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Song, H.-W.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Sperl, J.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

Sprünken, D.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Steed, D.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Steenbergen, W.

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref]

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

Su, R.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Sudo, Y.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Suita, T.

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Sutherland, J. V.

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Szabo, T. L.

T. L. Szabo, in Diagnostic Ultrasound Imaging: Inside Out (Academic Press, 2004), pp. 785–786.

Takada, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Tamura, S.

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

Tang, Q.

Tang, Y.

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics (2018).

Taroni, P.

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Thomas, P.

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Tingberg, A.

A. Tingberg, “X-ray tomosynthesis: a review of its use for breast and chest imaging,” Radiat. Prot. Dosim. 139(1-3), 100–107 (2010).
[Crossref]

Togashi, K.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Toi, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Tokiwa, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Torii, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Troccaz, J.

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

Troy, T. L.

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
[Crossref]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

Tucker, F. L.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Ullberg, C.

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

Valdes, A.

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

van de Vijver, M. J.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

van den Engh, F.

van den Engh, F. M.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

van der Schaaf, M. C.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

van Dommelen, R. C.

M. Dantuma, R. C. van Dommelen, and S. Manohar, “A 3d semi-anthropomorphic photoacoustic breast phantom,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p. 108781P.

van Hespen, J.

van Hespen, J. C.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

van Leeuwen, T.

Van Leeuwen, T. G.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

Veltman, J.

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

Vercauteren, T.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

Vogel, M.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

Vogt, W. C.

W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Wang, J.

Wang, L. V.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Waters, J.

M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
[Crossref]

Wear, K. A.

W. C. Vogt, X. Zhou, R. Andriani, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation,” Biomed. Opt. Express 10(2), 449–464 (2019).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Weaver, J. B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Weinberg, R. A.

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144(5), 646–674 (2011).
[Crossref]

West, S. J.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

Whelan, W. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

Wildgruber, M.

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

Wiley, B. J.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Willinger, R.

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Wiskin, J.

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

Wong, R. Y. J.

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

Wyman, D.

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

Xia, W.

E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D. I. Nikitichev, A. L. David, S. J. West, S. Ourselin, J. C. Hebden, T. Vercauteren, and A. E. Desjardins, “Gel wax-based tissue-mimicking phantoms for multispectral photoacoustic imaging,” Biomed. Opt. Express 9(3), 1151–1163 (2018).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

M. Heijblom, D. Piras, W. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing breast cancer using the twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?” Opt. Express 20(11), 11582–11597 (2012).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

Yagi, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Yamaga, I.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

Yang, W.

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

Yanwu, D.

S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.

Yao, J.

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics (2018).

Yim, M. J.

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Yongchen, S.

S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.

Yoshikawa, A.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Young, C. A.

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Zagzebski, J. A.

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

Zell, K.

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

Zeqiri, B.

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref]

Zhang, R.

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Zhao, C.

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

Zhensheng, T.

S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.

Zhou, W.

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

Zhou, X.

Adv. Opt. Photonics (1)

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

BioChip J. (1)

E.-J. Jeong, H.-W. Song, Y.-J. Lee, S. J. Park, M. J. Yim, S. S. Lee, and B. K. Kim, “Fabrication and characterization of pvcp human breast tissue-mimicking phantom for photoacoustic imaging,” BioChip J. 11(1), 67–75 (2017).
[Crossref]

Biomed. Opt. Express (4)

Cell (1)

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144(5), 646–674 (2011).
[Crossref]

Clin. Cancer Res. (1)

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral optoacoustic tomography (msot) of human breast cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref]

Eur. Radiol. (1)

A. Becker, M. Masthoff, J. Claussen, S. J. Ford, W. Roll, M. Burg, P. J. Barth, W. Heindel, M. Schäfers, M. Eisenblätter, and M. Wildgruber, “Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach,” Eur. Radiol. 28(2), 602–609 (2018).
[Crossref]

IEEE Pulse (1)

M. Heijblom, W. Steenbergen, and S. Manohar, “Clinical photoacoustic breast imaging: the Twente experience,” IEEE Pulse 6(3), 42–46 (2015).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. F. Greenleaf and R. C. Bahn, “Clinical imaging with transmissive ultrasonic computerized tomography,” IEEE Trans. Biomed. Eng. BME-28(2), 177–185 (1981).
[Crossref]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref]

J. Acoust. Soc. Am. (1)

J. Wiskin, D. Borup, S. Johnson, and M. Berggren, “Non-linear inverse scattering: High resolution quantitative breast tissue tomography,” J. Acoust. Soc. Am. 131(5), 3802–3813 (2012).
[Crossref]

J. Biomed. Opt. (7)

T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1(3), 342–356 (1996).
[Crossref]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. J. Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref]

Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, and M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
[Crossref]

B. T. Cox, J. G. Laufer, P. C. Beard, and S. R. Arridge, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17(6), 061202 (2012).
[Crossref]

Y. Asao, Y. Hashizume, T. Suita, K.-I. Nagae, K. Fukutani, Y. Sudo, T. Matsushita, S. Kobayashi, M. Tokiwa, I. Yamaga, E. Fakhrejahani, T. Masae, M. Kawashima, M. Takada, S. Kanao, M. Kataoka, T. Shiina, and M. Toi, “Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images,” J. Biomed. Opt. 21(11), 116009 (2016).
[Crossref]

C. Jia, W. C. Vogt, K. A. Wear, T. J. Pfefer, and B. S. Garra, “Two-layer heterogeneous breast phantom for photoacoustic imaging,” J. Biomed. Opt. 22(10), 1–14 (2017).
[Crossref]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Poly (vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref]

J. Can. Assoc. Radiol. (1)

J. T. L. Pope, M. E. Read, T. Medsker, A. J. Buschi, and A. Brenbridge, “Breast skin thickness: normal range and causes of thickening shown on film-screen mammography,” J. Can. Assoc. Radiol. 35, 365–368 (1984).

J. Comput. Assist. Tomogr. (1)

Y. Sato, N. Shiraga, S. Nakajima, S. Tamura, and R. Kikinis, “Local maximum intensity projection (lmip): A new rendering method for vascular visualization,” J. Comput. Assist. Tomogr. 22(6), 912–917 (1998).

J. Innovative Opt. Health Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).
[Crossref]

J. Med. Imaging (1)

A. H. Rossman, M. Catenacci, C. Zhao, D. Sikaria, J. E. Knudsen, D. Dawes, M. E. Gehm, E. Samei, B. J. Wiley, and J. Y. Lo, “Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region,” J. Med. Imaging 6(2), 021604 (2019).
[Crossref]

J. Ultrasound Medicine (1)

H. G. Nasief, I. M. Rosado-Mendez, J. A. Zagzebski, and T. J. Hall, “Acoustic properties of breast fat,” J. Ultrasound Medicine 34(11), 2007–2016 (2015).
[Crossref]

Lancet (1)

M. Morrow, J. Waters, and E. Morris, “Mri for breast cancer screening, diagnosis, and treatment,” Lancet 378(9805), 1804–1811 (2011).
[Crossref]

Med. Biol. Eng. Comput. (1)

L. Landini and R. Sarnelli, “Evaluation of the attenuation coefficients in normal and pathological breast tissue,” Med. Biol. Eng. Comput. 24(3), 243–247 (1986).
[Crossref]

Med. Phys. (3)

N. Hungr, J.-A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref]

A. Carton, P. Bakic, C. Ullberg, H. Derand, and A. D. Maidment, “Development of a physical 3d anthropomorphic breast phantom,” Med. Phys. 38(2), 891–896 (2011).
[Crossref]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3d photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref]

Nat. Commun. (1)

L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. Zhang, and L. V. Wang, “Single-breath-hold photoacoustic computed tomography of the breast,” Nat. Commun. 9(1), 2352 (2018).
[Crossref]

Nat. Methods (1)

L. V. Wang and J. Yao, “A practical guide to photoacoustic tomography in the life sciences,” Nat. Methods 13(8), 627–638 (2016).
[Crossref]

Nature (2)

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000).
[Crossref]

P. Carmeliet and R. K. Jain, “Molecular mechanisms and clinical applications of angiogenesis,” Nature 473(7347), 298–307 (2011).
[Crossref]

Opt. Express (1)

Photoacoustics (2)

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref]

S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation,” Photoacoustics 2(4), 137–142 (2014).
[Crossref]

Phys. Med. Biol. (6)

V. G. Peters, D. Wyman, M. Patterson, and G. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[Crossref]

K. Zell, J. Sperl, M. Vogel, R. Niessner, and C. Haisch, “Acoustical properties of selected tissue phantom materials for ultrasound imaging,” Phys. Med. Biol. 52(20), N475–N484 (2007).
[Crossref]

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref]

E. Maneas, W. Xia, D. I. Nikitichev, B. Daher, M. Manimaran, R. Y. J. Wong, C.-W. Chang, B. Rahmani, C. Capelli, S. Schievano, G. Burriesci, S. Ourselin, A. L. David, M. C. Finlay, S. J. West, T. Vercauteren, and A. E. Desjardins, “Anatomically realistic ultrasound phantoms using gel wax with 3d printed moulds,” Phys. Med. Biol. 63(1), 015033 (2018).
[Crossref]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref]

A. Kharine, S. Manohar, R. Seeton, R. G. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly (vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol. 48(3), 357–370 (2003).
[Crossref]

PLoS One (1)

P. Taroni, G. Quarto, A. Pifferi, F. Abbate, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Breast tissue composition and its dependence on demographic risk factors for breast cancer: non-invasive assessment by time domain diffuse optical spectroscopy,” PLoS One 10(6), e0128941 (2015).
[Crossref]

Radiat. Prot. Dosim. (1)

A. Tingberg, “X-ray tomosynthesis: a review of its use for breast and chest imaging,” Radiat. Prot. Dosim. 139(1-3), 100–107 (2010).
[Crossref]

Radiol. Clin. (1)

W. A. Berg, “Supplemental screening sonography in dense breasts,” Radiol. Clin. 42(5), 845–851 (2004).
[Crossref]

Radiology (2)

G. L. Menezes, R. M. Pijnappel, C. Meeuwis, R. Bisschops, J. Veltman, P. T. Lavin, M. J. van de Vijver, and R. M. Mann, “Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging,” Radiology 288(2), 355–365 (2018).
[Crossref]

E. I. Neuschler, R. Butler, C. A. Young, L. D. Barke, M. L. Bertrand, M. Böhm-Vélez, S. Destounis, P. Donlan, S. R. Grobmyer, J. Katzen, K. A. Kist, P. T. Lavin, E. V. Makariou, T. M. Parris, K. J. Schilling, F. L. Tucker, and B. E. Dogan, “A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists,” Radiology 287(2), 398–412 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[Crossref]

Sci. Rep. (1)

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, M. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref]

Ultrason. Imaging (1)

P. Edmonds, C. Mortensen, J. Hill, S. Holland, J. Jensen, P. Schattner, A. Valdes, R. Lee, and F. Marzoni, “Ultrasound tissue characterization of breast biopsy specimens,” Ultrason. Imaging 13(2), 162–185 (1991).
[Crossref]

Ultrasonic tissue characterization II (1)

B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, “Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography,” Ultrasonic tissue characterization II 525, 227–233 (1979).

Ultrasound in Medicine & Biology (1)

A. L. Scherzinger, R. A. Belgam, P. L. Carson, C. R. Meyer, J. V. Sutherland, F. L. Bookstein, and T. M. Silver, “Assessment of ultrasonic computed tomography in symptomatic breast patients by discriminant analysis,” Ultrasound in Medicine & Biology 15(1), 21–28 (1989).
[Crossref]

Ultrasound Medicine & Biol. (3)

C. Li, N. Duric, P. Littrup, and L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Medicine & Biol. 35(10), 1615–1628 (2009).
[Crossref]

F. T. d’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Medicine & Biol. 12(10), 795–808 (1986).
[Crossref]

J. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “Copolymer-in-oil phantom materials for elastography,” Ultrasound Medicine & Biol. 35(7), 1185–1197 (2009).
[Crossref]

Ultrasound Q. (1)

R. J. Hooley, L. Andrejeva, and L. M. Scoutt, “Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging,” Ultrasound Q. 27(1), 23–47 (2011).
[Crossref]

Other (22)

S. M. Schoustra, D. Piras, R. Huijink, Tim J. P. M. op’t Root, L. Alink, W. F. Muller Kobold, W. Steenbergen, and S. Manohar, “Twente photoacoustic mammoscope 2: system overview and three-dimensional vascular network images in healthy breasts,” print (2019).

M. Li, Y. Tang, and J. Yao, “Photoacoustic tomography of blood oxygenation: A mini review,” Photoacoustics (2018).

A. Oraevsky, R. Su, H. Nguyen, J. Moore, Y. Lou, S. Bhadra, L. Forte, M. Anastasio, and W. Yang, “Full-view 3d imaging system for functional and anatomical screening of the breast,” in Photons Plus Ultrasound: Imaging and Sensing 2018, vol. 10494 (International Society for Optics and Photonics, 2018), pp.104942Y-1–104943Y-10.

S. Manohar and M. Dantuma, “Current and future trends in photoacoustic breast imaging,” Photoacoustics (2019).
[Crossref]

F. A. Duck, Physical Properties of Tissues: A Comprehensive Reference Book (Academic press, 2013).

S. Yongchen, D. Yanwu, T. Jie, and T. Zhensheng, “Ultrasonic propagation parameters in human tissues,” in IEEE 1986 Ultrasonics Symposium (IEEE, 1986), pp. 905–908.

S. M. Schoustra, R. Huijink, L. Alink, T. J. op’t Root, D. Sprünken, D. Piras, W. F. M. Kobold, C. A. Klazen, M. C. van der Schaaf, F. M. van den Engh, W. Steenbergen, and S. Manohar, “The Twente Photoacoustic Mammoscope 2: 3D vascular network visualization,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p.1087813.

H. Azhari, Basics of Biomedical Ultrasound for Engineers (John Wiley & Sons, 2010).

K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC press, 2015).

M. Dantuma, “Three-dimensional model of an acoustic characterization block mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911762 .

M. Dantuma, “Three-dimensional model of an acoustic characterization block holder,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911765 .

T. L. Szabo, in Diagnostic Ultrasound Imaging: Inside Out (Academic Press, 2004), pp. 785–786.

S. Prahl, “Optical property measurements using the inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital 9205 (1999).

M. Dantuma, “Three-dimensional model for the breast contour mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911747 .

M. Dantuma, “Three-dimensional model for the fibroglandular-fat interface mould,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911750 .

M. Dantuma, “Three-dimensional blood vessel model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911753 .

M. Dantuma, “Top part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911756 .

M. Dantuma, “Bottom part of a three-dimensional tumor mould model,” figshare (2019). [retrieved 27 September 2019] https://doi.org/10.6084/m9.figshare.9911759 .

K. L. Bontrager and J. Lampignano, Textbook of Radiographic Positioning and Related Anatomy-e-Book (Elsevier Health Sciences, 2013).

E. C. Mackle, E. Maneas, C. Little, E. Carr, W. Xia, D. Nikitichev, R. D. Rakhit, M. C. Finlay, and A. E. Desjardins, “Wall-less vascular poly (vinyl) alcohol gel ultrasound imaging phantoms using 3d printed vessels,” in Design and Quality for Biomedical Technologies XII, vol. 10870 (International Society for Optics and Photonics, 2019), p. 108700P.

M. Dantuma, R. C. van Dommelen, and S. Manohar, “A 3d semi-anthropomorphic photoacoustic breast phantom,” in Photons Plus Ultrasound: Imaging and Sensing 2019, vol. 10878 (International Society for Optics and Photonics, 2019), p. 108781P.

J. R. Harris, M. E. Lippman, C. K. Osborne, and M. Morrow, Diseases of the Breast (Lippincott Williams & Wilkins, 2012).

Supplementary Material (7)

NameDescription
» Dataset 1       mould to give the phantom a realistic breast shape
» Dataset 2       mould for generating an undulating fat-fibroglandular tissue boundary
» Dataset 3       blood vessel model
» Dataset 4       top part of mould to make a spherical tumor
» Dataset 5       bottom part of mould to make a spherical tumor
» Dataset 6       mould for producing acoustic test blocks
» Dataset 7       holder to place acoustic test block in acoustic characterization set-up

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (A-C) Models of the 3D printed moulds. A) shows the lobular shaped mould, B) the outer mould with the lobular mould placed inside. C) shows the blood vessel model that was 3D printed and subsequently embedded in silicon rubber to create a negative mould (D).
Fig. 2.
Fig. 2. Flow scheme for the development of the phantom together with pictures taken during the process. Different colors indicate the different TMMs. The numbers indicate the order of production.
Fig. 3.
Fig. 3. Schematic of set-up used for acoustic characterization measurements. The TMM block in holder can be flipped upside-down to measure through the thinner part (d$_1$) of the TMM.
Fig. 4.
Fig. 4. Photographs of prepared samples for characterization. (A) the acoustic test block having a thin upper part and a thick bottom part, placed inside a holder. (B) adjacent fat and fibroglandular TMM blocks for plasticizer diffusion measurements. (C) a 1 mm thick TMM slab inclined between two microscope slides.
Fig. 5.
Fig. 5. Schematic of measurement setup for monitoring diffusion of plasticizer between two adjacent TMM layers. A translation stage moves the TMM blocks between the transducer and the hydrophone needle along the x-axis in 1 mm steps. A transmission measurement is recorded at each location.
Fig. 6.
Fig. 6. Measured acoustic attenuation together with its power law fit (dashed line) against literature values with their error intervals as shaded areas. 1 = Edmonds et al. [60], 2 = d’Astous and Foster [61], 3 = Landini et al. [62].
Fig. 7.
Fig. 7. Optical absorption coefficient $\mu _a$ and reduced scattering coefficient $\mu _s'$ measured with the IAD method (open symbols), with expected error intervals (shaded in red) from calibration measurements on samples with known optical properties. A comparison is made with values from literature [73,7578].
Fig. 8.
Fig. 8. Sound speed in adjacent fat and fibroglandular TMM blocks monitored over a period of a month. The material boundaries are shown as dashed lines in the background.
Fig. 9.
Fig. 9. B-mode US images of the phantom acquired at two different positions. A) shows the phantom’s layered architecture and the undulating fat-fibroglandular boundary. B) shows the tumor model (made from fibroglandular TMM) embedded in the fat TMM layer, on top of fibroglandular TMM. Blood vessels are encircled.
Fig. 10.
Fig. 10. Local maximum intensity projections of the PA tomography measurements with the PAM2 system. A) is a medial view of a healthy volunteer measurement as presented in [79] (Reproduced with permission of the authors. Publisher permission sought, in progress). B-E are the medial and cranal views of the phantom measurements, where B) and C) are the results of the measurement on the phantom with skin and D) and E) of the measurement without the skin. The color-coding indicates the depth from the observer, where white is superficial and red is deep.
Fig. 11.
Fig. 11. Thresholded reconstruction of the measurement without the skin. The location of the tumor in the fibroglandular layer in encircled, and contains a small vessel and several speckles.

Tables (2)

Tables Icon

Table 1. Compositions of the PVCP TMMs. TMM = tissue mimicking material, PVC = polyvinylchloride, HS = heat stabilizer, DEHA = Bis(2-ethylhexyl) adipate, BBP = Benzyl butyl phthalate, GB = glass beads, TiO$_2$ = titaniumdioxide, BPC = black plastic coloring.

Tables Icon

Table 2. The measured sound speed ($c_s$), density ($\rho$) and acoustic impedance ($Z$) of the PVCP TMMs together with literature values [38,48,57,6372]. The shown literature values are the average values from the different studies with corresponding error intervals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c s = Δ d c w Δ d c w Δ t ,
α s ( ω ) = 1 Δ d 20 l o g 10 [ A 1 ( ω ) A 2 ( ω ) ] + α w ( ω ) ,
Z = ρ c s
R = Z 2 Z 1 Z 2 + Z 1 ,

Metrics