Abstract

The notion that a spatially confined mechanical excitation would produce an elastogram with high spatial resolution has motivated the development of various elastography techniques with localized mechanical excitation. However, a quantitative investigation of the effects of spatial localization of mechanical excitation on the spatial resolution of elastograms is still lacking in optical coherence elastography (OCE). Here, we experimentally investigated the effect of spatial localization of acoustic radiation force (ARF) excitation on spatial resolution, contrast, and contrast-to-noise ratio (CNR) of dynamic uniaxial strain elastograms in dynamic ARF-OCE, based on a framework for analyzing the factors that influence the quality of the elastogram at different stages of the elastography workflow. Our results show that localized ARF excitation with a smaller acoustic focal spot size produced a strain elastogram with superior spatial resolution, contrast, and CNR. Our results also suggest that the spatial extent spanned by the displacement response in the sample may connect between the spatial localization of the mechanical excitation and the resulting elastogram quality. The elastography framework and experimental approach presented here may provide a basis for the quantitative analysis of elastogram quality in OCE that can be adapted and applied to different OCE systems and applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

Matt S. Hepburn, Philip Wijesinghe, Lixin Chin, and Brendan F. Kennedy
Biomed. Opt. Express 10(3) 1496-1513 (2019)

Quantified elasticity mapping of retinal layers using synchronized acoustic radiation force optical coherence elastography

Yueqiao Qu, Youmin He, Yi Zhang, Teng Ma, Jiang Zhu, Yusi Miao, Cuixia Dai, Mark Humayun, Qifa Zhou, and Zhongping Chen
Biomed. Opt. Express 9(9) 4054-4063 (2018)

Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves

Adeel Ahmad, Jongsik Kim, Nahil A. Sobh, Nathan D. Shemonski, and Stephen A. Boppart
Biomed. Opt. Express 5(7) 2349-2361 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
    [Crossref]
  2. T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
    [Crossref]
  3. M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
    [Crossref]
  4. D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
    [Crossref]
  5. K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
    [Crossref]
  6. R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
    [Crossref]
  7. G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
    [Crossref]
  8. M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
    [Crossref]
  9. M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
    [Crossref]
  10. J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
    [Crossref]
  11. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  12. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref]
  13. K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
    [Crossref]
  14. N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
    [Crossref]
  15. X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
    [Crossref]
  16. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref]
  17. M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U. S. A. 96(12), 6603–6608 (1999).
    [Crossref]
  18. C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
    [Crossref]
  19. J. J. Dahl, “Acoustic Radiation Force Imaging,” in Emerging Imaging Technology in Medicine, M. A. Anastasio and P. La Riviere, eds. (CRC Press, 2013), pp. 201–220.
  20. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
    [Crossref]
  21. R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
    [Crossref]
  22. M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
    [Crossref]
  23. R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
    [Crossref]
  24. D. Chavan, J. Mo, M. de Groot, A. Meijering, J. F. de Boer, and D. Iannuzzi, “Collecting optical coherence elastography depth profiles with a micromachined cantilever probe,” Opt. Lett. 38(9), 1476–1478 (2013).
    [Crossref]
  25. L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
    [Crossref]
  26. T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
    [Crossref]
  27. F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
    [Crossref]
  28. C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
    [Crossref]
  29. R. R. Iyer, N. Leartprapun, and S. G. Adie, Design and characterization of a multimodal system for 3D structural and mechanical imaging (Conference Presentation), SPIE BiOS (SPIE, 2018), Vol. 10496.
  30. M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
    [Crossref]
  31. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elstography,” Opt. Express 19(7), 6623–6634 (2011).
    [Crossref]
  32. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
    [Crossref]
  33. W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
    [Crossref]
  34. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
    [Crossref]
  35. Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
    [Crossref]
  36. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
    [Crossref]
  37. N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
    [Crossref]
  38. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
    [Crossref]
  39. W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
    [Crossref]
  40. F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
    [Crossref]
  41. E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
    [Crossref]
  42. W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
    [Crossref]
  43. J. M. Carcione, “Chapter 5 - The Reciprocity Principle,” in Wave Fields in Real Media (Third Edition) (Elsevier, 2015), pp. 231–246.
  44. P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
    [Crossref]
  45. F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
    [Crossref]
  46. T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24(6), 915–924 (1998).
    [Crossref]
  47. K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
    [Crossref]
  48. J. Jang and J. H. Chang, “Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing,” Sensors 16(8), 1248 (2016).
    [Crossref]
  49. L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
    [Crossref]
  50. E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
    [Crossref]
  51. E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
    [Crossref]
  52. J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
    [Crossref]
  53. J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
    [Crossref]
  54. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um,” Opt. Express 13(11), 3931–3944 (2005).
    [Crossref]
  55. K. J. Parker and N. Baddour, “The Gaussian shear wave in a dispersive medium,” Ultrasound Med. Biol. 40(4), 675–684 (2014).
    [Crossref]
  56. L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
    [Crossref]
  57. G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
    [Crossref]
  58. C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
    [Crossref]
  59. N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
    [Crossref]
  60. S. Beke, B. Farkas, I. Romano, and F. Brandi, “3D scaffold fabrication by mask projection excimer laser stereolithography,” Opt. Mater. Express 4(10), 2032 (2014).
    [Crossref]
  61. R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
    [Crossref]
  62. C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
    [Crossref]
  63. K. Kurokawa, S. Makita, Y. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6(1), 170–190 (2015).
    [Crossref]
  64. J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
    [Crossref]
  65. H. Spahr, C. Pfäffle, P. Koch, H. Sudkamp, G. Hüttmann, and D. Hillmann, “Interferometric detection of 3D motion using computational subapertures in optical coherence tomography,” Opt. Express 26(15), 18803–18816 (2018).
    [Crossref]
  66. M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
    [Crossref]

2019 (1)

2018 (5)

2017 (9)

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
[Crossref]

F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
[Crossref]

J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
[Crossref]

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

2016 (7)

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

J. Jang and J. H. Chang, “Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing,” Sensors 16(8), 1248 (2016).
[Crossref]

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

2015 (7)

K. Kurokawa, S. Makita, Y. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6(1), 170–190 (2015).
[Crossref]

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

2014 (7)

2013 (7)

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref]

D. Chavan, J. Mo, M. de Groot, A. Meijering, J. F. de Boer, and D. Iannuzzi, “Collecting optical coherence elastography depth profiles with a micromachined cantilever probe,” Opt. Lett. 38(9), 1476–1478 (2013).
[Crossref]

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
[Crossref]

2012 (3)

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref]

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

2011 (3)

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref]

R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elstography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref]

2010 (2)

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref]

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

2006 (1)

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

2005 (3)

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um,” Opt. Express 13(11), 3931–3944 (2005).
[Crossref]

2004 (1)

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

2001 (1)

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

2000 (1)

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

1999 (1)

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U. S. A. 96(12), 6603–6608 (1999).
[Crossref]

1998 (1)

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24(6), 915–924 (1998).
[Crossref]

1996 (1)

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref]

1995 (1)

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

1992 (1)

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Adie, S. G.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elstography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref]

R. R. Iyer, N. Leartprapun, and S. G. Adie, Design and characterization of a multimodal system for 3D structural and mechanical imaging (Conference Presentation), SPIE BiOS (SPIE, 2018), Vol. 10496.

Aebi, U.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Aglyamov, S.

Aglyamov, S. R.

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Ahmad, A.

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref]

Alam, S. K.

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

Allen, W. M.

Alvarez-Elizondo, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Ambrozinski, L.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Arnal, B.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

Baddour, N.

K. J. Parker and N. Baddour, “The Gaussian shear wave in a dispersive medium,” Ultrasound Med. Biol. 40(4), 675–684 (2014).
[Crossref]

Baker, E. L.

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

Barnes, J. M.

J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
[Crossref]

Baschong, W.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Beke, S.

Bertrand, M.

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref]

Boettiger, D.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Bonin, S.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Bonnecaze, R. T.

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

Boppart, S. A.

Borden, M.

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

Botvinick, E.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Bouma, B. E.

Brandi, F.

Brown, C. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Bush, M. B.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

Campbell, S. E.

R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
[Crossref]

Carcione, J. M.

J. M. Carcione, “Chapter 5 - The Reciprocity Principle,” in Wave Fields in Real Media (Third Edition) (Elsevier, 2015), pp. 231–246.

Cense, B.

Chammas, M. C.

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Chandrasekaran, S. N.

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Chang, E. W.

Chang, J. H.

J. Jang and J. H. Chang, “Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing,” Sensors 16(8), 1248 (2016).
[Crossref]

Chavan, D.

Chen, X.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

Chen, Z.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Chin, L.

Chin, S. L.

Coceano, G.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Cojoc, D.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Crecea, V.

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref]

Curatolo, A.

Dahl, J. J.

J. J. Dahl, “Acoustic Radiation Force Imaging,” in Emerging Imaging Technology in Medicine, M. A. Anastasio and P. La Riviere, eds. (CRC Press, 2013), pp. 201–220.

Daniels, A. U.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Das, S.

de Boer, J. F.

de Groot, M.

Dembo, M.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Deng, Y.

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

Dessauvagie, B. F.

Discher, D. E.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

Doyle, B. J.

Ehman, R. L.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref]

Engler, A. J.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

Fang, Q.

Farkas, B.

Fatemi, M.

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U. S. A. 96(12), 6603–6608 (1999).
[Crossref]

Fenner, J.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Ferguson, V. L.

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
[Crossref]

Ferreri, E.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Ford, C.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

Frank, G. R.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

Fritz, M.

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Fu, J.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

Gao, L.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

Gaub, H. E.

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Gefen, A.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Gerstmann, D. K.

Glaser, K. J.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref]

Greenleaf, J. F.

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U. S. A. 96(12), 6603–6608 (1999).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Guan, G.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Haghighi-Abayneh, M.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

Hammer, D. A.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Han, Z.

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Hepburn, M. S.

Hillmann, D.

Hobson, M. A.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

Hollender, P. J.

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

Hong, Y.

Hsu, Y. T.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

Huang, C.

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

Huang, J. T. J.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

Huang, Z.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Hussain, I.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Hüttmann, G.

Iannuzzi, D.

Ingber, D. E.

T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
[Crossref]

Iyer, R. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
[Crossref]

R. R. Iyer, N. Leartprapun, and S. G. Adie, Design and characterization of a multimodal system for 3D structural and mechanical imaging (Conference Presentation), SPIE BiOS (SPIE, 2018), Vol. 10496.

Jang, J.

J. Jang and J. H. Chang, “Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing,” Sensors 16(8), 1248 (2016).
[Crossref]

Jin, A. J.

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

John, R.

Johnson, K. R.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Johnson, T. D.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Kaffas, A. E.

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Kallel, F.

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Käs, J.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

Keatch, R. P.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Keating, M.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Kennedy, B. F.

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elstography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref]

Kennedy, K. M.

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

Kim, W.

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

Kirk Shung, K.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Kobler, J. B.

Koch, P.

Konstantopoulos, K.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref]

Kurokawa, K.

Kurup, A.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Lakins, J. N.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Lang, S.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

Larin, K. V.

Latham, B.

Leartprapun, N.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
[Crossref]

R. R. Iyer, N. Leartprapun, and S. G. Adie, Design and characterization of a multimodal system for 3D structural and mechanical imaging (Conference Presentation), SPIE BiOS (SPIE, 2018), Vol. 10496.

Lerner, R. M.

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

Levine, A. J.

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Li, C.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Li, D.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Li, J.

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Li, R.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Liang, X.

Liau, J.

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Ling, Y.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Liu, C. H.

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Lu, J.

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

Luker, G. D.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Luker, K. E.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Ma, T.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Ma, W.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

MacKintosh, F. C.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

Madsen, E. L.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

Mahaffy, R. E.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

Makita, S.

Mammoto, A.

T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
[Crossref]

Mammoto, T.

T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
[Crossref]

Manduca, A.

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref]

Margulies, S. S.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

McLaughlin, R. A.

Meemon, P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

Meijering, A.

Mo, J.

Mujat, M.

Mulligan, J. A.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

Munro, P. R. T.

Nabi, G.

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

Nair, A.

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Ndoye, F.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Neu, C. P.

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

Nevozhay, D.

Nguyen, M. M.

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Nguyen, T. M.

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Niemela, J.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Nightingale, K. R.

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

Nightingale, R. W.

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

Nossal, R.

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

O’Donnell, M.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

Ophir, J.

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24(6), 915–924 (1998).
[Crossref]

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref]

Paietta, R. C.

R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
[Crossref]

Palmeri, M. L.

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

Park, B. H.

Parker, K. J.

F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
[Crossref]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

K. J. Parker and N. Baddour, “The Gaussian shear wave in a dispersive medium,” Ultrasound Med. Biol. 40(4), 675–684 (2014).
[Crossref]

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

Paszek, M. J.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Pelivanov, I.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Pfäffle, C.

Pierce, M. C.

Pierron, F.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Przybyla, L.

J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
[Crossref]

Qi, W.

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Qian, X.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

Quirk, B. C.

Radmacher, M.

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Raghunathan, R.

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Raiteri, R.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Reinhart-King, C. A.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Robert, J.

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Rolland, J. P.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
[Crossref]

Romano, I.

Rosenzweig, S. J.

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

Rouze, N. C.

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

Rozenberg, G. I.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Ruiz, P. D.

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

Sackett, D. L.

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

Sampson, D. D.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elstography,” Opt. Express 19(7), 6623–6634 (2011).
[Crossref]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express 18(25), 25519–25534 (2010).
[Crossref]

Saunders, C. M.

Scarcelli, G.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Schill, A.

Scoles, G.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Searson, P. C.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref]

Sen, S.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

Shamdasani, V.

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Shen, T. T.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Shi, H.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

Shih, C.

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

Shih, C. K.

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

Shung, K. K.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

Sigrist, R. M. S.

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Singh, M.

C. H. Liu, D. Nevozhay, A. Schill, M. Singh, S. Das, A. Nair, Z. Han, S. Aglyamov, K. V. Larin, and K. V. Sokolov, “Nanobomb optical coherence elastography,” Opt. Lett. 43(9), 2006–2009 (2018).
[Crossref]

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Sokolov, K. V.

Song, S.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

Spahr, H.

Stacer, A. C.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Standish, B. A.

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

Stolz, M.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Sudkamp, H.

Sun, C.

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

Sunyer, R.

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

Sweeney, H. L.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

Tearney, G. J.

Tien, A.

Tillamnn, R. W.

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Trahey, G. E.

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

Trutna, C. A.

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

Untracht, G. R.

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

VanLandingham, M. R.

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Varghese, T.

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24(6), 915–924 (1998).
[Crossref]

Venturelli, L.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Vorstius, J. B.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Vuong, B.

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

Wang, R. K.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

Wang, R. W.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Wang, S.

Watts, L.

Weaver, V. M.

J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
[Crossref]

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Wen, X. Y.

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

Wijesinghe, P.

Willmann, J. K.

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Winterroth, F.

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Wirtz, D.

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref]

Wu, C.

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

Xie, H.

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Yang, V. X. D.

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

Yang, Y.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

Yao, J.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

Yasuno, Y.

Yoon, S. J.

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

Yousafzai, M. S.

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Yu, D.

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

Yu, M.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

Yun, S. H.

Zahir, N.

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Zaman, M. H.

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

Zhou, Q.

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

Zhou, S.

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Zilkens, R.

Zvietcovich, F.

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
[Crossref]

Acta Biomater. (1)

M. Keating, A. Kurup, M. Alvarez-Elizondo, A. J. Levine, and E. Botvinick, “Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility,” Acta Biomater. 57, 304–312 (2017).
[Crossref]

Ann. Biomed. Eng. (1)

W. Kim, V. L. Ferguson, M. Borden, and C. P. Neu, “Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues,” Ann. Biomed. Eng. 44(3), 705–724 (2016).
[Crossref]

Annu. Rev. Cell Dev. Biol. (1)

T. Mammoto, A. Mammoto, and D. E. Ingber, “Mechanobiology and Developmental Control,” Annu. Rev. Cell Dev. Biol. 29(1), 27–61 (2013).
[Crossref]

Appl. Phys. Lett. (1)

W. Qi, R. Li, T. Ma, K. Kirk Shung, Q. Zhou, and Z. Chen, “Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer,” Appl. Phys. Lett. 104(12), 123702 (2014).
[Crossref]

Biomed. Opt. Express (7)

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express 5(7), 2113–2124 (2014).
[Crossref]

L. Chin, A. Curatolo, B. F. Kennedy, B. J. Doyle, P. R. T. Munro, R. A. McLaughlin, and D. D. Sampson, “Analysis of image formation in optical coherence elastography using a multiphysics approach,” Biomed. Opt. Express 5(9), 2913–2930 (2014).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref]

K. Kurokawa, S. Makita, Y. Hong, and Y. Yasuno, “Two-dimensional micro-displacement measurement for laser coagulation using optical coherence tomography,” Biomed. Opt. Express 6(1), 170–190 (2015).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics,” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

W. M. Allen, K. M. Kennedy, Q. Fang, L. Chin, A. Curatolo, L. Watts, R. Zilkens, S. L. Chin, B. F. Dessauvagie, B. Latham, C. M. Saunders, and B. F. Kennedy, “Wide-field quantitative micro-elastography of human breast tissue,” Biomed. Opt. Express 9(3), 1082–1096 (2018).
[Crossref]

M. S. Hepburn, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Analysis of spatial resolution in phase-sensitive compression optical coherence elastography,” Biomed. Opt. Express 10(3), 1496–1513 (2019).
[Crossref]

Biophys. J. (2)

E. L. Baker, J. Lu, D. Yu, R. T. Bonnecaze, and M. H. Zaman, “Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential,” Biophys. J. 99(7), 2048–2057 (2010).
[Crossref]

M. Stolz, R. Raiteri, A. U. Daniels, M. R. VanLandingham, W. Baschong, and U. Aebi, “Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy,” Biophys. J. 86(5), 3269–3283 (2004).
[Crossref]

Cancer Cell (1)

M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver, “Tensional homeostasis and the malignant phenotype,” Cancer Cell 8(3), 241–254 (2005).
[Crossref]

Cancer Lett. (1)

C. Li, G. Guan, Y. Ling, Y. T. Hsu, S. Song, J. T. J. Huang, S. Lang, R. K. Wang, Z. Huang, and G. Nabi, “Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer,” Cancer Lett. 357(1), 121–128 (2015).
[Crossref]

Cell (1)

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell 126(4), 677–689 (2006).
[Crossref]

Exp. Mech. (1)

J. Fu, M. Haghighi-Abayneh, F. Pierron, and P. D. Ruiz, “Depth-Resolved Full-Field Measurement of Corneal Deformation by Optical Coherence Tomography and Digital Volume Correlation,” Exp. Mech. 56(7), 1203–1217 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Mulligan, G. R. Untracht, S. N. Chandrasekaran, C. N. Brown, and S. G. Adie, “Emerging Approaches for High-Resolution Imaging of Tissue Biomechanics With Optical Coherence Elastography,” IEEE J. Sel. Top. Quantum Electron. 22(3), 246–265 (2016).
[Crossref]

IEEE Trans. Med. Imaging (1)

C. Shih, C. Huang, Q. Zhou, and K. K. Shung, “High-Resolution Acoustic-Radiation-Force-Impulse Imaging for Assessing Corneal Sclerosis,” IEEE Trans. Med. Imaging 32(7), 1316–1324 (2013).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

N. C. Rouze, Y. Deng, C. A. Trutna, M. L. Palmeri, and K. R. Nightingale, “Characterization of Viscoelastic Materials Using Group Shear Wave Speeds,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 65(5), 780–794 (2018).
[Crossref]

J. Acoust. Soc. Am. (2)

K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110(1), 625–634 (2001).
[Crossref]

L. Gao, K. J. Parker, S. K. Alam, and R. M. Lerner, “Sonoelasticity imaging: Theory and experimental verification,” J. Acoust. Soc. Am. 97(6), 3875–3886 (1995).
[Crossref]

J. Biomech. (1)

R. C. Paietta, S. E. Campbell, and V. L. Ferguson, “Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone,” J. Biomech. 44(2), 285–290 (2011).
[Crossref]

J. Biomed. Opt. (7)

Z. Han, M. Singh, S. R. Aglyamov, C. H. Liu, A. Nair, R. Raghunathan, C. Wu, J. Li, and K. V. Larin, “Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model,” J. Biomed. Opt. 21(9), 090504 (2016).
[Crossref]

T. M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. Biomed. Opt. 20(1), 016001 (2015).
[Crossref]

F. Zvietcovich, J. P. Rolland, J. Yao, P. Meemon, and K. J. Parker, “Comparative study of shear wave-based elastography techniques in optical coherence tomography,” J. Biomed. Opt. 22(3), 035010 (2017).
[Crossref]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt. 18(12), 121508 (2013).
[Crossref]

C. Sun, B. A. Standish, B. Vuong, X. Y. Wen, and V. X. D. Yang, “Digital image correlation–based optical coherence elastography,” J. Biomed. Opt. 18(12), 121515 (2013).
[Crossref]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt. 18(12), 121504 (2013).
[Crossref]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. W. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt. 18(11), 111417 (2013).
[Crossref]

J. Cell Sci. (1)

J. M. Barnes, L. Przybyla, and V. M. Weaver, “Tissue mechanics regulate brain development, homeostasis and disease,” J. Cell Sci. 130(1), 71–82 (2017).
[Crossref]

J. Innovative Opt. Health Sci. (1)

F. Zvietcovich, J. P. Rolland, and K. J. Parker, “An approach to viscoelastic characterization of dispersive media by inversion of a general wave propagation model,” J. Innovative Opt. Health Sci. 10(06), 1742008 (2017).
[Crossref]

J. Magn. Reson. Imaging (1)

K. J. Glaser, A. Manduca, and R. L. Ehman, “Review of MR elastography applications and recent developments,” J. Magn. Reson. Imaging 36(4), 757–774 (2012).
[Crossref]

Nanotechnology (1)

G. Coceano, M. S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, and E. Ferreri, “Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation,” Nanotechnology 27(6), 065102 (2016).
[Crossref]

Nat. Commun. (1)

N. Leartprapun, R. R. Iyer, G. R. Untracht, J. A. Mulligan, and S. G. Adie, “Photonic force optical coherence elastography for three-dimensional mechanical microscopy,” Nat. Commun. 9(1), 2079 (2018).
[Crossref]

Nat. Methods (1)

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Nat. Rev. Cancer (1)

D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer: the role of physical interactions and mechanical forces in metastasis,” Nat. Rev. Cancer 11(7), 512–522 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Med. Biol. (1)

E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50(23), 5597–5618 (2005).
[Crossref]

Phys. Rev. Lett. (1)

R. E. Mahaffy, C. K. Shih, F. C. MacKintosh, and J. Käs, “Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells,” Phys. Rev. Lett. 85(4), 880–883 (2000).
[Crossref]

PLoS One (1)

R. Sunyer, A. J. Jin, R. Nossal, and D. L. Sackett, “Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response,” PLoS One 7(10), e46107 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U. S. A. 96(12), 6603–6608 (1999).
[Crossref]

Proc. SPIE (1)

N. Leartprapun, R. R. Iyer, and S. G. Adie, “Model-independent quantification of soft tissue viscoelasticity with dynamic optical coherence elastography,” Proc. SPIE 10053, 1005322 (2017).
[Crossref]

Sci. Rep. (4)

L. Ambrozinski, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Rep. 6(1), 38967 (2016).
[Crossref]

K. M. Kennedy, L. Chin, R. A. McLaughlin, B. Latham, C. M. Saunders, D. D. Sampson, and B. F. Kennedy, “Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography,” Sci. Rep. 5(1), 15538 (2015).
[Crossref]

X. Qian, T. Ma, M. Yu, X. Chen, K. K. Shung, and Q. Zhou, “Multi-functional Ultrasonic Micro-elastography Imaging System,” Sci. Rep. 7(1), 1230 (2017).
[Crossref]

J. Fenner, A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker, “Macroscopic stiffness of breast tumors predicts metastasis,” Sci. Rep. 4(1), 5512 (2015).
[Crossref]

Science (1)

M. Radmacher, R. W. Tillamnn, M. Fritz, and H. E. Gaub, “From molecules to cells: imaging soft samples with the atomic force microscope,” Science 257(5078), 1900–1905 (1992).
[Crossref]

Sensors (1)

J. Jang and J. H. Chang, “Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing,” Sensors 16(8), 1248 (2016).
[Crossref]

Theranostics (1)

R. M. S. Sigrist, J. Liau, A. E. Kaffas, M. C. Chammas, and J. K. Willmann, “Ultrasound Elastography: Review of Techniques and Clinical Applications,” Theranostics 7(5), 1303–1329 (2017).
[Crossref]

Ultrasound Med. Biol. (5)

P. J. Hollender, S. J. Rosenzweig, K. R. Nightingale, and G. E. Trahey, “Single- and multiple-track-location shear wave and acoustic radiation force impulse imaging: matched comparison of contrast, contrast-to-noise ratio and resolution,” Ultrasound Med. Biol. 41(4), 1043–1057 (2015).
[Crossref]

F. Kallel, M. Bertrand, and J. Ophir, “Fundamental limitations on the contrast-transfer efficiency in elastography: An analytic study,” Ultrasound Med. Biol. 22(4), 463–470 (1996).
[Crossref]

T. Varghese and J. Ophir, “An analysis of elastographic contrast-to-noise ratio,” Ultrasound Med. Biol. 24(6), 915–924 (1998).
[Crossref]

K. J. Parker and N. Baddour, “The Gaussian shear wave in a dispersive medium,” Ultrasound Med. Biol. 40(4), 675–684 (2014).
[Crossref]

M. M. Nguyen, S. Zhou, J. Robert, V. Shamdasani, and H. Xie, “Development of Oil-in-Gelatin Phantoms for Viscoelasticity Measurement in Ultrasound Shear Wave Elastography,” Ultrasound Med. Biol. 40(1), 168–176 (2014).
[Crossref]

Other (3)

J. M. Carcione, “Chapter 5 - The Reciprocity Principle,” in Wave Fields in Real Media (Third Edition) (Elsevier, 2015), pp. 231–246.

R. R. Iyer, N. Leartprapun, and S. G. Adie, Design and characterization of a multimodal system for 3D structural and mechanical imaging (Conference Presentation), SPIE BiOS (SPIE, 2018), Vol. 10496.

J. J. Dahl, “Acoustic Radiation Force Imaging,” in Emerging Imaging Technology in Medicine, M. A. Anastasio and P. La Riviere, eds. (CRC Press, 2013), pp. 201–220.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Flowchart of a general elastography workflow illustrating factors that contribute to the quality of the final elastogram and parameters that characterize the system response at different stages. Factors that are investigated in this paper are underlined.
Fig. 2.
Fig. 2. Illustrations of MIL and MSR to characterize the sample response to localized mechanical excitation. (a) MIL is measured from the sample displacement response (blue) induced by localized ARF excitation (black). Red double-headed arrows indicate the MIL metrics: half-width at half-maximum displacement, $\textrm{H}{\textrm{W}_{\textrm{HM}}}$, and half-width at 1/e2 of the maximum displacement, $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$. Shaded areas conceptually represent locations where the sample is no longer considered to be mechanically interacting with the point of excitation. (b) MSR is measured from the reconstructed uniaxial strain elastogram (blue) of a sample containing a sharp step variation in mechanical properties (black). Red double-headed arrow indicates spatial resolution; inset illustrates equivalent impulse response of the reconstructed step response with red arrows denoting the spatial resolution. µɛ, soft, µɛ, stiff, σɛ, soft, and σɛ, stiff denote median and standard deviation of uniaxial strain measured on the soft and stiff sides, respectively.
Fig. 3.
Fig. 3. ARF-OCE system. (a) Schematic of ARF-OCE system. An SD-OCT system with a 1300-nm center wavelength broadband SLD source, interrogated the sample from the top to measure the sample displacement. A water-immersion US transducer provided ARF excitation from below the sample. (b) Schematic of acoustic beam profile measurement setup, using the edge of a glass coverslip as a sub-resolution line target. An example B-mode US image of the coverslip edge is shown. (c) FWHM of acoustic LSF as a function of axial position for native focusing (red) and additional AL focusing (blue). Insets show LSF as a function of lateral position, x, at the focal plane for each case. The axial position, z, is defined w.r.t. the acoustic focal plane. SLD: superluminescent diode, US: ultrasonic, AL: acoustic lens.
Fig. 4.
Fig. 4. Axial displacement responses to 1300-Hz localized ARF excitation in homogeneous samples. (a) Axial displacement amplitude map (color) overlaid on top of structural OCT image (grayscale) obtained from sample S1 with 190-µm ROE. Dotted line indicates approximate depth at which displacement was averaged to obtain Uz(x). Scale bars: 250 µm. (b) and (c) Uz(x) normalized by its maximum value as a function of x obtained with 190-µm (blue) and 326-µm (red) ROEs from samples S1 and S3, respectively. Data is shown in transparent markers. Solid lines correspond to the fit curves (coefficient of determination > 0.94, root mean squared error < 0.06). Black dotted and dashed lines indicate half and 1/e2 amplitude levels, respectively. (d) and (e) Phase angle of ũz(x) as a function of x, overlaid with bar plots of $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ (striped bar) and $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ (solid bar) obtained with 190-µm (blue) and 326-µm (red) ROEs from samples S1 and S3, respectively. Data is shown in transparent markers. Black solid line highlights linear evolution of mechanical wave phase w.r.t. transverse propagation distance. Black vertical dashed line indicates the onset of this linear propagation region.
Fig. 5.
Fig. 5. Effect of ROE on ROR based on experimentally quantified MIL metrics. $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ and $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ as a function of modulation frequency, f, obtained with 190-µm (blue) and 326-µm (red) ROEs in (a) and (d) sample S1, and (b) and (e) sample S3. Error bars represent ± 1 standard deviation from 8 measurements (2 scan directions, 4 frames each). There was no statistically significant difference between the X and Y scan directions (data not shown). (c) and (f) Boxplots of $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ and $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ from all f obtained with 190-µm (blue) and 326-µm (red) ROEs in each sample (separated by vertical lines). Whiskers represent approximately ± 3 standard deviation (if the data were normally distributed); data outside of this range are considered outliers and shown in black markers. Horizontal bars indicate statistically significant pairwise difference between two conditions: black bars for comparisons between two ROEs in each sample, blue bars for comparisons between two samples with the 190-µm ROE, and red bars for the comparisons between two samples with the 326-µm ROEs.
Fig. 6.
Fig. 6. Correlation between sample mechanical properties and the effect of ROE on ROR. (a) and (b) Linear regressions of relative $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ (green) and relative $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ (orange) from all f (1-2 kHz) as a function of magnitude of complex shear modulus, |G*|, and loss ratio, G′′/G′, of the samples measured by shear rheometry at 36 Hz. Spearman R2 rank correlation coefficients are reported; statistical significance is indicated the in the brackets (*p < 0.01 and **p < 0.001). Data is shown in transparent markers. Solid lines represent the best-fit lines. Horizontal dotted line delineates between regions where ROR is decreased with a smaller ROE (relative MIL < 1) and vice versa.
Fig. 7.
Fig. 7. Uniaxial strain elastogram obtained from 1400-Hz ARF excitation in side-by-side samples. (a) Uniaxial strain map (color) overlaid on top of structural OCT image (grayscale) obtained from side-by-side sample S1-S4 (S1 on the left, S4 on the right) with 190-µm ROE. Dotted line indicates approximate depth at which strain was averaged to obtain ɛzz(x). Scale bars: 250 µm. (b) ɛzz(x) normalized by relative ARF power, PARF, as a function of x obtained with 190-µm ROE (blue), 326-µm ROE (red), and wide-area excitation (gray) in sample S1-S4. (c) Results in (b) normalized between 0 and 1 for comparison of the sharpness of mechanical step on the uniaxial strain elastogram. In (b, c), data is shown in transparent markers. Solid lines correspond to the fit curves (coefficient of determination 0.65, 0.64, and 0.91 for wide-area excitation, 326-µm ROE, and 190-µm ROE, respectively).
Fig. 8.
Fig. 8. Effect of ROE on elastogram quality based on experimentally quantified MSR metrics. (a)–(c) Resolution, contrast, and CNR as a function of modulation frequency, f, obtained with 190-µm ROE (blue), 326-µm ROE (red), and wide-area excitation (gray) in side-by-side sample S1-S4. Error bars represent ± 1 standard deviation from 80 measurements (2 scan directions, 40 frames each). There was no statistically significant difference between the two scan directions (data not shown). (d)–(f) Boxplots of resolution, contrast and CNR from all f obtained with 190-µm ROE (blue), 326-µm ROE (red), and wide-area excitation in each side-by-side sample (separated by vertical lines). Whiskers represent approximately ± 3 standard deviation (if the data were normally distributed); data outside of this range are considered outliers and shown in black markers. Horizontal bars indicate statistically significant pairwise difference between two conditions: black bars for comparisons between two ROEs in each sample, blue bars for comparisons between two samples with the 190-µm ROE, and red bars for the comparisons between two samples with the 326-µm ROEs. Data for wide-area excitation is only available for side-by-side sample S1-S4.
Fig. 9.
Fig. 9. Contrast and CNR as a function of median uniaxial strain amplitude. Scatter plot of contrast as a function of (a) µɛ, stiff and (b) µɛ, soft, and CNR as a function of (c) µɛ, stiff and (d) µɛ, soft, obtained with 190-µm ROE (blue), 326-µm ROE (red), and wide-area excitation (gray) at all f in side-by-side sample S1-S4.
Fig. 10.
Fig. 10. Heatmap of Spearman R rank correlation coefficient between MIL metrics and MSR metrics. MSR metrics quantified in a side-by-side sample is analyzed w.r.t. MIL metrics quantified in the corresponding softer-side sample (e.g., MSR metrics from side-by-side sample S1-S4 are paired with MIL metrics from sample S1). N = 18 measurements per sample (2 ROEs, 9 modulation frequencies each). R > 0 (blue) indicates smaller ROR correlates to superior elastogram quality. R < 0 (red) indicates smaller ROR correlates to worse elastogram quality. Cross indicates that the correlation is not statistically significant at 95% confidence interval.
Fig. 11.
Fig. 11. Correlation between ROR characterized by MIL metrics and elastogram quality characterized by MSR metrics. (a)–(c) and (e)–(g) Resolution, contrast, and CNR quantified in side-by-side sample S1-S4 as a function of $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ and $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ quantified in sample S1. (d) and (h) Resolution and CNR quantified in side-by-side sample S3-S4 as a function of $\textrm{H}{\textrm{W}_{\textrm{HM}}}$ and $\textrm{H}{\textrm{W}_{{1 \mathord{\left/ {\vphantom {1 {{e^2}}}} \right.} {{e^2}}}}}$ quantified in sample S3. Spearman R2 rank correlation coefficients are reported; two-tailed statistical significance is indicated the in the brackets (*p < 0.05 and **p < 0.005). 18 data points (2 ROEs, 9 modulation frequencies each) are shown in transparent markers. Solid and dotted lines represent the linear best-fit and extreme-fit lines, respectively.

Tables (2)

Tables Icon

Table 1. Agar concentrations and bulk mechanical properties of agar-in-gelatin samples. Remaining mass percentage consisted of 5% gelatin, 0.6% TiO2, and distilled water. Shear moduli reflect mean ± standard deviation of 3 oscillatory shear rheometry measurements at 36 Hz.

Tables Icon

Table 2. Experimental designs for the quantification of MIL and MSR metrics.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Resolution = ( 2 ln 2 ) w ,
Contrast = μ ε , soft μ ε , stiff μ ε , soft + μ ε , stiff ,
CNR = μ ε , soft μ ε , stiff σ ε , soft 2 + σ ε , stiff 2 ,
[ u ~ z ( x , z i , t ) u ~ z ( x , z i + 1 , t ) u ~ z ( x , z i + 36 , t ) ] = [ 1 z i 1 z i + 1 1 z i + 36 ] [ β 0 ε ~ z z ( x , z i , t ) ] ,
ε z z , fit ( x ) = a 2 [ 1 ± erf ( x b c ) ] + d ,

Metrics