Abstract

The dynamic activities of mitochondria and lysosomes, which play important roles in maintaining cellular homeostasis, were observed without labeling by using highly sensitive photothermal (PT) microscopy. This imaging modality allows for the direct observation of cellular organelles that contain endogenous chromophores, with high temporal and spatial resolution. We identified mitochondria and lysosomes inside living mammalian cells via simultaneous dual-color imaging. Moreover, dynamic imaging revealed that the lysosomes make contact with mitochondria and move between sites within the dynamic mitochondrial network. Since mitochondrial and lysosomal functions are intricately connected, PT microscopy should provide in-depth understanding of cellular functions associated with mitochondria–lysosome communication as well as insights into various human diseases caused by dysfunction of these organelles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free optical imaging of mitochondria in live cells

David Lasne, Gerhard. A. Blab, Francesca De Giorgi, François Ichas, Brahim Lounis, and Laurent Cognet
Opt. Express 15(21) 14184-14193 (2007)

High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy

Yasunori Nawa, Wataru Inami, Sheng Lin, Yoshimasa Kawata, and Susumu Terakawa
Opt. Express 23(11) 14561-14568 (2015)

Photothermal imaging of skeletal muscle mitochondria

Toru Tomimatsu, Jun Miyazaki, Yutaka Kano, and Takayoshi Kobayashi
Biomed. Opt. Express 8(6) 2965-2975 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
    [Crossref]
  2. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
    [Crossref]
  3. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
    [Crossref]
  4. D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
    [Crossref]
  5. A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
    [Crossref]
  6. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
    [Crossref]
  7. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
    [Crossref]
  8. J. Miyazaki, H. Tsurui, and T. Kobayashi, “Reduction of distortion in photothermal microscopy and its application to the high-resolution three-dimensional imaging of nonfluorescent tissues,” Biomed. Opt. Express 6(9), 3217–3224 (2015).
    [Crossref]
  9. D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
    [Crossref]
  10. J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
    [Crossref]
  11. J. Miyazaki, T. Iida, S. Tanaka, A. Hayashi-Takagi, H. Kasai, S. Okabe, and T. Kobayashi, “Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy,” Biomed. Opt. Express 7(5), 1702–1710 (2016).
    [Crossref]
  12. J. Miyazaki and Y. Toumon, “Experimental evaluation of temperature increase and associated detection sensitivity in shot noise-limited photothermal microscopy,” Opt. Commun. 430, 170–175 (2019).
    [Crossref]
  13. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Sensitivity enhancement of photothermal microscopy with radially segmented balanced detection,” Opt. Lett. 40(4), 479–482 (2015).
    [Crossref]
  14. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Simultaneous dual-wavelength imaging of nonfluorescent tissues with 3D subdiffraction photothermal microscopy,” Opt. Express 23(3), 3647–3656 (2015).
    [Crossref]
  15. J. Miyazaki, “Improvement of signal-to-noise ratio in photothermal microscopy by optimizing detection aperture,” Opt. Commun. 390, 99–104 (2017).
    [Crossref]
  16. M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
    [Crossref]
  17. W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).
  18. Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
    [Crossref]
  19. M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
    [Crossref]
  20. H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
    [Crossref]
  21. Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
    [Crossref]
  22. T. Saito and J. Sadoshima, “Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart,” Circ. Res. 116(8), 1477–1490 (2015).
    [Crossref]
  23. F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
    [Crossref]
  24. J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
    [Crossref]
  25. I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
    [Crossref]
  26. Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
    [Crossref]
  27. C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
    [Crossref]
  28. K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
    [Crossref]

2019 (1)

J. Miyazaki and Y. Toumon, “Experimental evaluation of temperature increase and associated detection sensitivity in shot noise-limited photothermal microscopy,” Opt. Commun. 430, 170–175 (2019).
[Crossref]

2018 (2)

Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
[Crossref]

M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
[Crossref]

2017 (2)

J. Miyazaki, “Improvement of signal-to-noise ratio in photothermal microscopy by optimizing detection aperture,” Opt. Commun. 390, 99–104 (2017).
[Crossref]

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
[Crossref]

2016 (4)

Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
[Crossref]

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

J. Miyazaki, T. Iida, S. Tanaka, A. Hayashi-Takagi, H. Kasai, S. Okabe, and T. Kobayashi, “Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy,” Biomed. Opt. Express 7(5), 1702–1710 (2016).
[Crossref]

2015 (4)

2014 (3)

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref]

2012 (3)

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
[Crossref]

2010 (3)

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

2007 (1)

2002 (2)

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

2001 (2)

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

2000 (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Aihara, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

Andersson, H.

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

Audano, M.

M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
[Crossref]

Auffarth, K.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Ayyadevara, S.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

Baechi, T.

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

Blab, G. A.

Bohnert, M.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Boland, B.

F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
[Crossref]

Bonifacino, J. S.

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

Brusnichkin, A. V.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Cabrera, M.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Calafat, J.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Chang, D. C.

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

Chong, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Cognet, L.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref]

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref]

De Giorgi, F.

Dusseljee, S.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Elbaz-Alon, Y.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Endo, H.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Fernandez-Borja, M.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Fujita, K.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Fujiwara, Y.

Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
[Crossref]

Futerman, A. H.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Gaiduk, A.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Gao, W. H.

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

Geerts, W.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Geiger, T.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Germain, M.

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
[Crossref]

Griffith, J.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Guardia, C. M.

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

Hayashi-Takagi, A.

He, J.

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

Hibara, A.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Hoechl, M.

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

Holtom, G. R.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Honscher, C.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Ichas, F.

Iida, M.

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

Iida, T.

Ilamathi, H. S.

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
[Crossref]

Janssen, H.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Janssen, L.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Jordens, I.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Kabuta, T.

Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
[Crossref]

Kasai, H.

Kato, M.

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

Kawasumi, K.

Kawata, S.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Keren-Kaplan, T.

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Kitamori, T.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Kobayashi, T.

Krainc, D.

Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
[Crossref]

Lasne, D.

Lounis, B.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref]

D. Lasne, G. A. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, “Label-free optical imaging of mitochondria in live cells,” Opt. Express 15(21), 14184–14193 (2007).
[Crossref]

Lu, S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Luo, K. Q.

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

Mari, M.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Marsman, M.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Min, W.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Mitro, N.

M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
[Crossref]

Miyazaki, J.

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Neefjes, J.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Okabe, S.

Okada, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Orrit, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

Palonpon, A. F.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Platt, F. M.

F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
[Crossref]

Proskurnin, M. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Pu, J.

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

Pu, Y. M.

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

Reggiori, F.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Richter, C.

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

Rosenfeld-Gur, E.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Ruijgrok, P. V.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

Sadoshima, J.

T. Saito and J. Sadoshima, “Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart,” Circ. Res. 116(8), 1477–1490 (2015).
[Crossref]

Saito, T.

T. Saito and J. Sadoshima, “Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart,” Circ. Res. 116(8), 1477–1490 (2015).
[Crossref]

Sato, K.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Schneider, A.

M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
[Crossref]

Schuldiner, M.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Shevtsova, E. F.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Shinder, V.

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

Shmookler Reis, R. J.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

Smith, N. I.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Sodeoka, M.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Tamaki, E.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

Tanaka, S.

Todkar, K.

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
[Crossref]

Tokeshi, M.

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

Toumon, Y.

J. Miyazaki and Y. Toumon, “Experimental evaluation of temperature increase and associated detection sensitivity in shot noise-limited photothermal microscopy,” Opt. Commun. 430, 170–175 (2019).
[Crossref]

Tsurui, H.

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Ungermann, C.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

van der Laan, M.

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

van der Spoel, A. C.

F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
[Crossref]

Vermeulen, P.

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref]

Vladimirov, Y. A.

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Wada, K.

Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
[Crossref]

Wang, N.

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

Wong, Y. C.

Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
[Crossref]

Wubbolts, R.

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Xie, X. S.

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Yorulmaz, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

Ysselstein, D.

Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
[Crossref]

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

Anal. Chem. (1)

E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, “Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,” Anal. Chem. 74(7), 1560–1564 (2002).
[Crossref]

Appl. Phys. Lett. (1)

S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, “Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,” Appl. Phys. Lett. 96(11), 113701 (2010).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J. 102(3), 672–681 (2012).
[Crossref]

Circ. Res. (1)

T. Saito and J. Sadoshima, “Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart,” Circ. Res. 116(8), 1477–1490 (2015).
[Crossref]

Curr. Biol. (1)

I. Jordens, M. Fernandez-Borja, M. Marsman, S. Dusseljee, L. Janssen, J. Calafat, H. Janssen, R. Wubbolts, and J. Neefjes, “The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors,” Curr. Biol. 11(21), 1680–1685 (2001).
[Crossref]

Dev. Cell (2)

Y. Elbaz-Alon, E. Rosenfeld-Gur, V. Shinder, A. H. Futerman, T. Geiger, and M. Schuldiner, “A Dynamic Interface between Vacuoles and Mitochondria in Yeast,” Dev. Cell 30(1), 95–102 (2014).
[Crossref]

C. Honscher, M. Mari, K. Auffarth, M. Bohnert, J. Griffith, W. Geerts, M. van der Laan, M. Cabrera, F. Reggiori, and C. Ungermann, “Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria,” Dev. Cell 30(1), 86–94 (2014).
[Crossref]

Front. Cell Dev. Biol. (1)

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Front. Cell Dev. Biol. 5, 106 (2017).
[Crossref]

J. Biochem. (1)

Y. Fujiwara, K. Wada, and T. Kabuta, “Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways,” J. Biochem. 161, 145–154 (2016).
[Crossref]

J. Biophotonics (1)

A. V. Brusnichkin, D. A. Nedosekin, E. I. Galanzha, Y. A. Vladimirov, E. F. Shevtsova, M. A. Proskurnin, and V. P. Zharov, “Ultrasensitive label-free photothermal imaging, spectral identification, and quantification of cytochrome c in mitochondria, live cells, and solutions,” J. Biophotonics 3(12), 791–806 (2010).
[Crossref]

J. Cell Biol. (1)

F. M. Platt, B. Boland, and A. C. van der Spoel, “The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction,” J. Cell Biol. 199(5), 723–734 (2012).
[Crossref]

J. Cell Sci. (2)

J. Pu, C. M. Guardia, T. Keren-Kaplan, and J. S. Bonifacino, “Mechanisms and functions of lysosome positioning,” J. Cell Sci. 129(23), 4329–4339 (2016).
[Crossref]

W. H. Gao, Y. M. Pu, K. Q. Luo, and D. C. Chang, “Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells,” J. Cell Sci. 114, 2855–2862 (2001).

J. Microsc. (2)

P. Vermeulen, L. Cognet, and B. Lounis, “Photothermal microscopy: optical detection of small absorbers in scattering environments,” J. Microsc. 254(3), 115–121 (2014).
[Crossref]

H. Andersson, T. Baechi, M. Hoechl, and C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(1), 1–7 (2002).
[Crossref]

J. Neurochem. (1)

M. Audano, A. Schneider, and N. Mitro, “Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration,” J. Neurochem. 147(3), 291–309 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39(Part 1, No. 9A), 5316–5322 (2000).
[Crossref]

Nature (1)

Y. C. Wong, D. Ysselstein, and D. Krainc, “Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis,” Nature 554(7692), 382–386 (2018).
[Crossref]

Opt. Commun. (2)

J. Miyazaki, “Improvement of signal-to-noise ratio in photothermal microscopy by optimizing detection aperture,” Opt. Commun. 390, 99–104 (2017).
[Crossref]

J. Miyazaki and Y. Toumon, “Experimental evaluation of temperature increase and associated detection sensitivity in shot noise-limited photothermal microscopy,” Opt. Commun. 430, 170–175 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. U. S. A. 109(1), 28–32 (2012).
[Crossref]

Sci. Rep. (1)

J. He, N. Wang, H. Tsurui, M. Kato, M. Iida, and T. Kobayashi, “Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue,” Sci. Rep. 6(1), 30209 (2016).
[Crossref]

Science (1)

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule's absorption by photothermal contrast,” Science 330(6002), 353–356 (2010).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       Optically sectioned PT images of live HeLa cells
» Visualization 2       Time-lapse PT imaging of live HeLa cells under CCCP loading (first half)
» Visualization 3       Time-lapse PT imaging of live HeLa cells under CCCP loading (last half)
» Visualization 4       Dynamic PT imaging of mitochondria and lysosomes in a live HeLa cell

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the experimental setup. LD, laser diode; SMF, single-mode fiber; PBS, polarizing beam splitter; CF, color filter; PH, pinhole; PMT, photomultiplier tube; FM, flip mirror; OL, objective lens; CL; collection lens; BFB, bifurcated fiber bundle; BD, balanced detector; LIA, lock-in amplifier. (b) PT image of 5-nm gold nanoparticles dispersed in polyvinyl alcohol film. Green and red colors indicate signal intensities at the pump wavelength of 520 and 640 nm, respectively. Pump-beam powers incident on the sample were 0.3 and 0.9 mW at 520 and 640 nm, respectively. The probe beam power was 7 mW. The image size is 500 × 500 pixels with the pixel size of 8 nm. Scale bar: 1 µm. (c) Intensity profiles along the dotted line in (b). (d) Point spread function along the axial direction.
Fig. 2.
Fig. 2. Live HeLa cell imaging results. (a) Bright field image. (b, c) PT images at the wavelengths of (b) 520 and (c) 640 nm. The pixel size is 24 nm. (d) Dual-wavelength image produced by combining the images in (b) and (c). (e) Magnified image of the outlined area in (d). Scale bars: 10 µm (d) and 5 µm (e).
Fig. 3.
Fig. 3. (a) PT image of fixed HeLa cells. (b) PT image of live COS-7 cells. (c) PT images of live HeLa cells upon repeated measurements; the number of measurements is indicated at the lower right of each image panel. (d) Mean signal intensity as a function of number of measurements. (e) Selected optically sectioned images of live HeLa cells; a total of 40 images were acquired by changing the z-position of the sample. Scale bars: 10 µm.
Fig. 4.
Fig. 4. PT images of live HeLa cells (a) before and (b) after CCCP loading for a period of 135 min; 200 images of 500 × 500 pixels were successively acquired during the CCCP loading process with a frame interval of 37 s (Visualization 2 and Visualization 3). The pixel size is 75 nm. Scale bars: 10 µm.
Fig. 5.
Fig. 5. (a) Photothermal and (b) fluorescence images of live HeLa cells acquired from the same view. Lysosomes were specifically labeled using red fluorescent proteins. For the fluorescence imaging, the power of the excitation laser beam was set at 0.1 mW. The images consist of 1100 × 1100 pixels with the pixel size of 62 nm. Scale bar: 10 µm.
Fig. 6.
Fig. 6. Dynamic PT imaging of mitochondria and lysosomes in a live HeLa cell. (a) Successive images were acquired with a frame interval of 4 s (Visualization 4). The pixel size is 105 nm. Scale bar: 10 µm. (b-g) Time-course images of an expanded view of the region outlined by the red square in (a). The location of a lysosome is indicated by the arrows. (h) The trajectory of the lysosome over 550 s. (i) Lysosomal positions in the x and y directions during the time-course measurement.

Metrics