Abstract

A compact clinical prototype multi-functional optical coherence tomography (OCT) device for the posterior human eye has been developed. This compact Jones-matrix OCT (JM-OCT) device integrates all components into a single package. Multiple image functions, i.e., scattering intensity, OCT angiography, and the degree of polarization uniformity, are obtained. The device has the capability for measuring local birefringence. Multi-functional imaging of several eyes with age-related macular degeneration is demonstrated. The compact JM-OCT device will be useful for the in vivo non-invasive investigation of abnormal tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography

Shinnosuke Azuma, Shuichi Makita, Arata Miyazawa, Yasushi Ikuno, Masahiro Miura, and Yoshiaki Yasuno
Biomed. Opt. Express 9(7) 2955-2973 (2018)

Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography

Satoshi Sugiyama, Young-Joo Hong, Deepa Kasaragod, Shuichi Makita, Sato Uematsu, Yasushi Ikuno, Masahiro Miura, and Yoshiaki Yasuno
Biomed. Opt. Express 6(12) 4951-4974 (2015)

Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation

Shuichi Makita, Toshihiro Mino, Tastuo Yamaguchi, Mashiro Miura, Shinnosuke Azuma, and Yoshiaki Yasuno
Biomed. Opt. Express 9(9) 4372-4389 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  2. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref]
  3. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [Crossref]
  4. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
    [Crossref]
  5. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: Application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
    [Crossref]
  6. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref]
  7. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
    [Crossref]
  8. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref]
  9. A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
    [Crossref]
  10. S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
    [Crossref]
  11. Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
    [Crossref]
  12. T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
    [Crossref]
  13. M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
    [Crossref]
  14. Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
    [Crossref]
  15. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24(5), 300–302 (1999).
    [Crossref]
  16. C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref]
  17. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
    [Crossref]
  18. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
    [Crossref]
  19. S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
    [Crossref]
  20. M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
    [Crossref]
  21. F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
    [Crossref]
  22. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
    [Crossref]
  23. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
    [Crossref]
  24. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
    [Crossref]
  25. Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
    [Crossref]
  26. P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
    [Crossref]
  27. M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
    [Crossref]
  28. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
    [Crossref]
  29. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
    [Crossref]
  30. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: Performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
    [Crossref]
  31. C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
    [Crossref]
  32. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref]
  33. N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: Unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
    [Crossref]
  34. M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
    [Crossref]
  35. Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
    [Crossref]
  36. M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, N. Aizawa, Y. Yokoyama, N. Himori, S. Kunimatsu-Sanuki, K. Maruyama, H. Kunikata, and T. Nakazawa, “Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 7(9), 3551–3573 (2016).
    [Crossref]
  37. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
    [Crossref]
  38. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref]
  39. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
    [Crossref]
  40. S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
    [Crossref]
  41. S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
    [Crossref]
  42. M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
    [Crossref]
  43. M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
    [Crossref]
  44. S. Azuma, S. Makita, A. Miyazawa, Y. Ikuno, M. Miura, and Y. Yasuno, “Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography,” Biomed. Opt. Express 9(7), 2955–2973 (2018).
    [Crossref]
  45. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref]
  46. American National Standards Institute and Laser Institute of America, American National Standard for Safe Use of Lasers (Laser Institute of America, Orlando, FL, 2014).
  47. M. Takaya, “Optical fiber coupler,” PCT Patent WO2018225554 (A1), Tatsuta Electric Wire & Cable Co Ltd (2018).
  48. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-$\mu$μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
    [Crossref]
  49. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [Crossref]
  50. S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
    [Crossref]
  51. E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
    [Crossref]
  52. S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
    [Crossref]
  53. D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
    [Crossref]
  54. P. Thévenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microsc. Res. Tech. 70(2), 135–146 (2007).
    [Crossref]
  55. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref]
  56. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In Vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
    [Crossref]
  57. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [Crossref]
  58. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
    [Crossref]
  59. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
  60. N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
    [Crossref]
  61. C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Visual Sci. 47(8), 3556–3564 (2006).
    [Crossref]
  62. S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
    [Crossref]
  63. F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
    [Crossref]
  64. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
    [Crossref]
  65. F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
    [Crossref]
  66. C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
    [Crossref]
  67. B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
    [Crossref]
  68. A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
    [Crossref]
  69. K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
    [Crossref]
  70. Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
    [Crossref]
  71. S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
    [Crossref]
  72. Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
    [Crossref]
  73. J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
    [Crossref]
  74. F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
    [Crossref]

2019 (2)

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

2018 (5)

2017 (5)

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref]

D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
[Crossref]

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

2016 (5)

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, N. Aizawa, Y. Yokoyama, N. Himori, S. Kunimatsu-Sanuki, K. Maruyama, H. Kunikata, and T. Nakazawa, “Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 7(9), 3551–3573 (2016).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

2015 (9)

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: Unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

2014 (7)

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref]

2013 (4)

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

2012 (7)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

2011 (4)

2010 (2)

2009 (3)

2008 (5)

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-$\mu$μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

2007 (3)

2006 (3)

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Visual Sci. 47(8), 3556–3564 (2006).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

2004 (2)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29(21), 2512–2514 (2004).
[Crossref]

2002 (2)

2001 (1)

1999 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1986 (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Agawa, T.

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

Ahlers, C.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

Aizawa, N.

Akiba, M.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Armour, R. L.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Augustin, M.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Azuma, S.

Bailey, S. T.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Bansal, A.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Baumann, B.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Baumann, S. O.

Beer, F.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

Beheregaray, S.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Bolz, M.

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

Bouma, B. E.

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: Unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref]

Braaf, B.

Burns, R.

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

Burns, R. E.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Cairncross, A.

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In Vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Chen, Z.

Chico-Calero, I.

Chiu, S. J.

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

Choi, B.

Choi, W.

Chou, L.

Christenbury, J. G.

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

Daniel, E.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Dansingani, K. K.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

de Boer, J. F.

de Groot, M.

Deák, G.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

DeCroos, F. C.

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

Delori, F. C.

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Visual Sci. 47(8), 3556–3564 (2006).
[Crossref]

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Duan, L.

Duker, J. S.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

Edmunds, B.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Elsner, A. E.

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

Enfield, J.

Fabritius, T.

Fan, C.

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

Farsiu, S.

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Fercher, A.

Fialová, S.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Fingler, J.

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Flaxel, C. J.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Folgar, F. A.

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

Fraser, S. E.

Freund, K. B.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Fujimoto, J. G.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Fukuda, S.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Gao, S. S.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Gattey, D. M.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Geitzenauer, W.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Gilani, F.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Glösmann, M.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Goto, H.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

Götzinger, E.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Gröger, M.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Gruber, A.

Grunwald, J. E.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Hanson, S. R.

Hariri, A.

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Hata, M.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Heussen, F. M.

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

Heydary, C. S.

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

Himori, N.

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Holzer, S.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Hong, Y.

Hong, Y.-J.

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
[Crossref]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref]

Hornegger, J.

Hoshi, S.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Huang, D.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hurst, S.

Hwang, T. S.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Ikuno, Y.

Ishii, K.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Iwasaki, T.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

Izatt, J. A.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Jacques, S. L.

Jaffe, G. J.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

James, A.

Jia, W.

Jia, Y.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref]

Jonathan, E.

Ju, M. J.

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

Jung, S. H.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Kaplan, H. J.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

Karnowski, K.

Kasaragod, D.

Kawana, K.

Kawashima, Y.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Keane, P. A.

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

Keilhauer, C. N.

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Visual Sci. 47(8), 3556–3564 (2006).
[Crossref]

Kim, D. Y.

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Kishino, G.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Klein, M. L.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Kokubun, T.

Konegger, T.

Koreishi, A. F.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Kraus, M. F.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Kunikata, H.

Kunimatsu-Sanuki, S.

Kurokawa, K.

Lammer, J.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

Lauer, A. K.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Leahy, M.

Lee, S.-W.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Li, E.

Li, Q.

Liakopoulos, S.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Lim, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Lippok, N.

Litschauer, M.

Liu, G.

Liu, J. J.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Lombardi, L. H.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Lu, C. D.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Ma, Z.

Maguire, M. G.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Makita, S.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

S. Azuma, S. Makita, A. Miyazawa, Y. Ikuno, M. Miura, and Y. Yasuno, “Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography,” Biomed. Opt. Express 9(7), 2955–2973 (2018).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref]

D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: Performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-$\mu$μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

Maruyama, K.

McLaughlin, R. A.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Michels, S.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Milner, T. E.

Mino, T.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

Miura, M.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

S. Azuma, S. Makita, A. Miyazawa, Y. Ikuno, M. Miura, and Y. Yasuno, “Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography,” Biomed. Opt. Express 9(7), 2955–2973 (2018).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

Miyata, M.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Miyazawa, A.

Moon, S.

Morrison, J. C.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Msutta, S.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Muramatsu, D.

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

Nadkarni, S. K.

Nakazawa, T.

Nam, A. S.

Nelson, J. S.

Noble, P. B.

Novais, E.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

O’Connell, R. V.

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

Oh, W.-Y.

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

Oishi, A.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Omodaka, K.

Ongchin, S.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Ooto, S.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Oshika, T.

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
[Crossref]

Otsuka, K.

Ouyang, Y.

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

Parikh, M.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Park, B. H.

Phasukkijwatana, N.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Pierce, M. C.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Pircher, M.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref]

Pircher, N.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

Platzer, M.

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

Potsaid, B.

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qi, W.

Querques, G.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Querques, L.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Rao, N. A.

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

Rauscher, S.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Roberts, P.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ryu, M.

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Sacu, S.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

Sadda, S. R.

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Sampson, D. D.

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Sandhu, H. S.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

Sarraf, D.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Sattmann, H.

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schirmer, J.

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

Schlanitz, F.

Schlanitz, F. G.

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Schmidinger, G.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

Schmidt-Erfurth, U.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Schuman, S. G.

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Schütze, C.

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

Schwartz, D.

Schwartz, D. M.

Shiga, Y.

Spalek, T.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

Sticker, M.

Stinnett, S. S.

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Subhash, H.

Sugita, M.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

Sugiyama, S.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Takahashi, H.

Takaya, M.

M. Takaya, “Optical fiber coupler,” PCT Patent WO2018225554 (A1), Tatsuta Electric Wire & Cable Co Ltd (2018).

Tamiya, S.

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

Tamura, H.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Tan, A. C. S.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Tan, O.

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

Tang, S.

Thévenaz, P.

P. Thévenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microsc. Res. Tech. 70(2), 135–146 (2007).
[Crossref]

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Tokayer, J.

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Toth, C. A.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Tsuda, S.

Tsujikawa, A.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Tsukahara, R.

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

Ueda, S.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

Ueda-Arakawa, N.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Uematsu, S.

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Uji, A.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Unser, M.

P. Thévenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microsc. Res. Tech. 70(2), 135–146 (2007).
[Crossref]

Updike, P. G.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Usui, Y.

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

Vakoc, B. J.

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref]

Vass, C.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Vermeer, K. A.

Vienola, K. V.

Villiger, M.

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography,” Optica 5(10), 1329–1337 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

N. Lippok, M. Villiger, and B. E. Bouma, “Degree of polarization (uniformity) and depolarization index: Unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref]

Waheed, N. K.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Walsh, A. C.

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref]

Wang, R. K.

Wang, X.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Wang, Y.

Wartak, A.

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

Wedl, M.

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

Wei, E.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Werner, J. S.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Willoughby, A. S.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Wilson, D. J.

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Yamaguchi, T.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

Yamanari, M.

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, N. Aizawa, Y. Yokoyama, N. Himori, S. Kunimatsu-Sanuki, K. Maruyama, H. Kunikata, and T. Nakazawa, “Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 7(9), 3551–3573 (2016).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
[Crossref]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: Performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

Yamashiro, K.

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

Yannuzzi, L. A.

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Yao, G.

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

Yasuno, Y.

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

S. Azuma, S. Makita, A. Miyazawa, Y. Ikuno, M. Miura, and Y. Yasuno, “Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography,” Biomed. Opt. Express 9(7), 2955–2973 (2018).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
[Crossref]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using polarization-sensitive optical coherence tomography,” Opt. Lett. 39(24), 6783–6786 (2014).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: Performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-$\mu$μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

Ying, G.-s.

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Yokoyama, Y.

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Zawadzki, R. J.

Zhang, X.

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Zotter, S.

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

Am. J. Ophthalmol. (5)

M. Miura, Y.-J. Hong, Y. Yasuno, D. Muramatsu, T. Iwasaki, and H. Goto, “Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography,” Am. J. Ophthalmol. 159(3), 528–538.e3 (2015).
[Crossref]

K. K. Dansingani, A. C. S. Tan, F. Gilani, N. Phasukkijwatana, E. Novais, L. Querques, N. K. Waheed, J. S. Duker, G. Querques, L. A. Yannuzzi, D. Sarraf, and K. B. Freund, “Subretinal hyperreflective material imaged with optical coherence tomography angiography,” Am. J. Ophthalmol. 169, 235–248 (2016).
[Crossref]

Y. Kawashima, M. Hata, A. Oishi, S. Ooto, K. Yamashiro, H. Tamura, M. Miyata, A. Uji, N. Ueda-Arakawa, and A. Tsujikawa, “Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration,” Am. J. Ophthalmol. 181, 61–70 (2017).
[Crossref]

F. G. Schlanitz, S. Sacu, B. Baumann, M. Bolz, M. Platzer, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Identification of Drusen Characteristics in Age-Related Macular Degeneration by Polarization-Sensitive Optical Coherence Tomography,” Am. J. Ophthalmol. 160(2), 335–344.e1 (2015).
[Crossref]

C. Schütze, M. Wedl, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Progression of Retinal Pigment Epithelial Atrophy in Antiangiogenic Therapy of Neovascular Age-Related Macular Degeneration,” Am. J. Ophthalmol. 159(6), 1100–1114.e1 (2015).
[Crossref]

Biomed. Opt. Express (14)

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref]

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[Crossref]

S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6(12), 4951–4974 (2015).
[Crossref]

S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7(4), 1525–1548 (2016).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, N. Aizawa, Y. Yokoyama, N. Himori, S. Kunimatsu-Sanuki, K. Maruyama, H. Kunikata, and T. Nakazawa, “Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 7(9), 3551–3573 (2016).
[Crossref]

D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8(2), 653–669 (2017).
[Crossref]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref]

S. Azuma, S. Makita, A. Miyazawa, Y. Ikuno, M. Miura, and Y. Yasuno, “Pixel-wise segmentation of severely pathologic retinal pigment epithelium and choroidal stroma using multi-contrast Jones matrix optical coherence tomography,” Biomed. Opt. Express 9(7), 2955–2973 (2018).
[Crossref]

S. Makita, T. Mino, T. Yamaguchi, M. Miura, S. Azuma, and Y. Yasuno, “Clinical prototype of pigment and flow imaging optical coherence tomography for posterior eye investigation,” Biomed. Opt. Express 9(9), 4372–4389 (2018).
[Crossref]

Q. Li, K. Karnowski, P. B. Noble, A. Cairncross, A. James, M. Villiger, and D. D. Sampson, “Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 9(11), 5437–5455 (2018).
[Crossref]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref]

A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Complex differential variance algorithm for optical coherence tomography angiography,” Biomed. Opt. Express 5(11), 3822–3832 (2014).
[Crossref]

M. Yamanari, S. Tsuda, T. Kokubun, Y. Shiga, K. Omodaka, Y. Yokoyama, N. Himori, M. Ryu, S. Kunimatsu-Sanuki, H. Takahashi, K. Maruyama, H. Kunikata, and T. Nakazawa, “Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment,” Biomed. Opt. Express 6(2), 369–389 (2015).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).

Invest. Ophthalmol. Visual Sci. (13)

C. N. Keilhauer and F. C. Delori, “Near-Infrared Autofluorescence Imaging of the Fundus: Visualization of Ocular Melanin,” Invest. Ophthalmol. Visual Sci. 47(8), 3556–3564 (2006).
[Crossref]

S. Liakopoulos, S. Ongchin, A. Bansal, S. Msutta, A. C. Walsh, P. G. Updike, and S. R. Sadda, “Quantitative Optical Coherence Tomography Findings in Various Subtypes of Neovascular Age-Related Macular Degeneration,” Invest. Ophthalmol. Visual Sci. 49(11), 5048–5054 (2008).
[Crossref]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring Retinal Nerve Fiber Layer Birefringence, Retardation, and Thickness Using Wide-Field, High-Speed Polarization Sensitive Spectral Domain OCT,” Invest. Ophthalmol. Visual Sci. 54(1), 72–84 (2013).
[Crossref]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of Automated Drusen Detection by Polarization-Sensitive Optical Coherence Tomography,” Invest. Ophthalmol. Visual Sci. 52(7), 4571–4579 (2011).
[Crossref]

F. Beer, A. Wartak, N. Pircher, S. Holzer, J. Lammer, G. Schmidinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Mapping of corneal layer thicknesses with polarization-sensitive optical coherence tomography using a conical scan pattern,” Invest. Ophthalmol. Visual Sci. 59(13), 5579–5588 (2018).
[Crossref]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45(8), 2606–2612 (2004).
[Crossref]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 47(12), 5487–5494 (2006).
[Crossref]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 49(6), 2661–2667 (2008).
[Crossref]

Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous investigation of vascular and retinal pigment epithelial pathologies of exudative macular diseases by multifunctional optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5016–5031 (2014).
[Crossref]

P. Roberts, M. Sugita, G. Deák, B. Baumann, S. Zotter, M. Pircher, S. Sacu, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Automated identification and quantification of subretinal fibrosis in neovascular age-related macular degeneration using polarization-sensitive OCT,” Invest. Ophthalmol. Visual Sci. 57(4), 1699–1705 (2016).
[Crossref]

S. Fukuda, S. Beheregaray, D. Kasaragod, S. Hoshi, G. Kishino, K. Ishii, Y. Yasuno, and T. Oshika, “Noninvasive evaluation of phase retardation in blebs after glaucoma surgery using anterior segment polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 55(8), 5200–5206 (2014).
[Crossref]

M. Miura, S. Makita, Y. Yasuno, R. Tsukahara, Y. Usui, N. A. Rao, Y. Ikuno, S. Uematsu, T. Agawa, T. Iwasaki, and H. Goto, “Polarization-sensitive optical coherence tomographic documentation of choroidal melanin loss in chronic Vogt–Koyanagi–Harada disease,” Invest. Ophthalmol. Visual Sci. 58(11), 4467–4476 (2017).
[Crossref]

B. Baumann, J. Schirmer, S. Rauscher, S. Fialová, M. Glösmann, M. Augustin, M. Pircher, M. Gröger, and C. K. Hitzenberger, “Melanin Pigmentation in Rat Eyes: In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology,” Invest. Ophthalmol. Visual Sci. 56(12), 7462–7472 (2015).
[Crossref]

J. Biomed. Opt. (3)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[Crossref]

C. Fan and G. Yao, “Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 17(11), 110501 (2012).
[Crossref]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref]

J. Biophotonics (2)

N. Lippok, B. Braaf, M. Villiger, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Quantitative depolarization measurements for fiber-based polarization-sensitive optical frequency domain imaging of the retinal pigment epithelium,” J. Biophotonics 12(1), e201800156 (2019).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref]

Microsc. Res. Tech. (1)

P. Thévenaz and M. Unser, “User-friendly semiautomated assembly of accurate image mosaics in microscopy,” Microsc. Res. Tech. 70(2), 135–146 (2007).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: An open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref]

Ophthalmology (7)

S. G. Schuman, A. F. Koreishi, S. Farsiu, S. H. Jung, J. A. Izatt, and C. A. Toth, “Photoreceptor Layer Thinning over Drusen in Eyes with Age-Related Macular Degeneration Imaged In Vivo with Spectral-Domain Optical Coherence Tomography,” Ophthalmology 116(3), 488–496.e2 (2009).
[Crossref]

Y. Ouyang, F. M. Heussen, A. Hariri, P. A. Keane, and S. R. Sadda, “Optical Coherence Tomography–Based Observation of the Natural History of Drusenoid Lesion in Eyes with Dry Age-related Macular Degeneration,” Ophthalmology 120(12), 2656–2665 (2013).
[Crossref]

J. G. Christenbury, F. A. Folgar, R. V. O’Connell, S. J. Chiu, S. Farsiu, and C. A. Toth, “Progression of Intermediate Age-related Macular Degeneration with Proliferation and Inner Retinal Migration of Hyperreflective Foci,” Ophthalmology 120(5), 1038–1045 (2013).
[Crossref]

F. C. DeCroos, C. A. Toth, S. S. Stinnett, C. S. Heydary, R. Burns, and G. J. Jaffe, “Optical Coherence Tomography Grading Reproducibility during the Comparison of Age-related Macular Degeneration Treatments Trials,” Ophthalmology 119(12), 2549–2557 (2012).
[Crossref]

Y. Jia, E. Wei, X. Wang, X. Zhang, J. C. Morrison, M. Parikh, L. H. Lombardi, D. M. Gattey, R. L. Armour, B. Edmunds, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Optical coherence tomography angiography of optic disc perfusion in glaucoma,” Ophthalmology 121(7), 1322–1332 (2014).
[Crossref]

Y. Jia, S. T. Bailey, D. J. Wilson, O. Tan, M. L. Klein, C. J. Flaxel, B. Potsaid, J. J. Liu, C. D. Lu, M. F. Kraus, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration,” Ophthalmology 121(7), 1435–1444 (2014).
[Crossref]

A. S. Willoughby, G.-s. Ying, C. A. Toth, M. G. Maguire, R. E. Burns, J. E. Grunwald, E. Daniel, and G. J. Jaffe, Comparison of Age-Related Macular Degeneration Treatments Trials Research Group, “Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials,” Ophthalmology 122(9), 1846–1853.e5 (2015).
[Crossref]

Opt. Express (13)

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref]

G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: Application to phase instable and phase stable optical coherence tomography systems,” Opt. Express 19(12), 11429–11440 (2011).
[Crossref]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In Vivo high-contrast imaging of deep posterior eye by 1-$\mu$μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-$\mu$μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[Crossref]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17(5), 3980–3996 (2009).
[Crossref]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: Performance and local birefringence imaging,” Opt. Express 18(2), 854–876 (2010).
[Crossref]

S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18(24), 24395–24404 (2010).
[Crossref]

M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt. Express 21(16), 19412–19436 (2013).
[Crossref]

Opt. Lett. (6)

Optica (1)

Retina (1)

T. S. Hwang, Y. Jia, S. S. Gao, S. T. Bailey, A. K. Lauer, C. J. Flaxel, D. J. Wilson, and D. Huang, “Optical coherence tomography angiography features of diabetic retinopathy:,” Retina 35(11), 2371–2376 (2015).
[Crossref]

Sci. Rep. (3)

M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging,” Sci. Rep. 7(1), 3150 (2017).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

M. Miura, S. Makita, S. Azuma, Y. Yasuno, S. Ueda, S. Sugiyama, T. Mino, T. Yamaguchi, H. S. Sandhu, H. J. Kaplan, T. Iwasaki, and H. Goto, “Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment,” Sci. Rep. 9(1), 3278 (2019).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (2)

American National Standards Institute and Laser Institute of America, American National Standard for Safe Use of Lasers (Laser Institute of America, Orlando, FL, 2014).

M. Takaya, “Optical fiber coupler,” PCT Patent WO2018225554 (A1), Tatsuta Electric Wire & Cable Co Ltd (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of the developed JM-OCT device. (a) Light source and FBG trigger unit, (b) reference delay, (c) passive polarization delay module (PDM), (d) polarization-diversity and coherent-detection module (PDCDM), (e) calibration mirror, and (f) scanning head. FBG: fiber Bragg grating, APD: avalanche photo detector, BPD: balanced photo detector, DM: dichroic mirror, FC: fiber collimator, LP1, LP2: linear polarizers, NPBS: non-polarizing beam splitter, PBS: polarizing beam splitter, PC1, PC2, PC3: polarization controllers, and RAP: right-angle prism.
Fig. 2.
Fig. 2. Pictures of the developed JM-OCT device (a), developed JM-OCT device without cover (b), encapsulated polarization-diversity and coherent-detection module (PDCDM) and passive polarization delay module (PDM) (c), top view of the developed JM-OCT device (d), and side view of the developed JM-OCT device (e).
Fig. 3.
Fig. 3. Probe power stability. (a) Change in probe power with respect to temperature over time. (b) Relationship between temperature and probe power. Circles and triangles indicate data acquired using the JM-OCT device with conventional fiber couplers and the new stable couplers, respectively.
Fig. 4.
Fig. 4. Multiple images obtained by multi-functional OCT with a non-pathological case. (a) Scattering intensity, (b) OCTA, (c) DOPU, (d) RPE-melanin image, and (e) segmented RPE (red) overlaid on scattering intensity. The scale bar indicates 0.5 mm $\times$ 0.5 mm.
Fig. 5.
Fig. 5. Multiple images obtained by multi-functional OCT and segmentation results for a case with fibrosis. A color fundus photograph (a) and NIR-AF (b) were obtained. The en face maps of (c) RPE-melanin and (d) PAF images and the cross sections of (e) scattering intensity, (f) OCTA, (g) DOPU, (h) RPE-melanin, and (i) RPE (red) overlaid on scattering intensity images at the dotted lines in en face maps are shown. The scale bar indicates 0.5 mm $\times$ 0.5 mm.
Fig. 6.
Fig. 6. Multiple images obtained by multi-functional OCT and segmentation results for a subretinal hemorrhage case. A color fundus photograph (a) and NIR-AF (b) were obtained. The en face maps of (c) RPE-melanin and (d) PAF images and the cross sections of (e) scattering intensity, (f) OCTA, (g) DOPU, (h) RPE-melanin, and (i) RPE (red) overlaid on scattering intensity images at the dotted lines in en face maps are shown. The scale bar indicates 0.5 mm $\times$ 0.5 mm.
Fig. 7.
Fig. 7. Multiple images obtained by multi-functional OCT and segmentation results for a CNV case. A color fundus photograph (a) and NIR-AF (b) were obtained. The en face maps of (c) RPE-melanin and (d) PAF images and the cross sections of (e) scattering intensity, (f) OCTA, (g) DOPU, (h) RPE-melanin, and (i) RPE (red) overlaid on scattering intensity images at the dotted lines in en face maps are shown. The scale bar indicates 0.5 mm $\times$ 0.5 mm.
Fig. 8.
Fig. 8. Multiple images obtained by the multi-functional OCT and segmentation results for a CNV case. A color fundus photograph (a) and NIR-AF (b) were obtained. The en face map of (c) RPE-melanin and (d) PAF image and the cross sections of (e, j) scattering intensity, (f, k) OCTA, (g, l) DOPU, (h, m) RPE-melanin, and (i, n) RPE (red) overlaid on scattering intensity images at the dotted lines (1: e–i, 2: j–n) in en face maps are shown. The scale bar indicates 0.5 mm $\times$ 0.5 mm.
Fig. 9.
Fig. 9. Several cases with subretinal hyperreflective material. OCT intensity images in (a, b, c) fibrosis cases and (d, e) hemorrhage cases. The local birefringence values are measured in the yellow circles.
Fig. 10.
Fig. 10. En face projections of (a, b) DOPU and (c, d) RPE-melanin image, and (e, f) NIR-AF of (a, c, e) CNV and (b, d, f) fibrosis subjects. Some abnormal signatures are not appeared in DOPU projection (green circle and arrow), while high melanin signal patterns in RPE-melanin image are in good agreement with hyper-autofluorescence pattern of NIR-AF.

Tables (1)

Tables Icon

Table 1. Comparison of the specifications of the proposed device with those of the posterior eye JM-OCT devices developed by Sugiyama et al. [40] and Makita et al. [41].

Metrics