Abstract

We investigate the influence of optical coherence tomography (OCT) system resolution on high-quality in vivo en face corneal endothelial cell images of the monkey eye, to allow for quantitative analysis of cell density. We vary the lateral resolution of the ultrahigh resolution (UHR) OCT system (centered at 850 nm) by using different objectives, and the axial resolution by windowing the source spectrum. By suppressing the motion of the animal, we are able to obtain a high-quality en face corneal endothelial cell map in vivo using UHR OCT for the first time with a lateral resolution of 3.1 µm. Increasing lateral resolution did not result in a better image quality but a smaller field of view (FOV), and the axial resolution had little impact on the visualization of corneal endothelial cells. Quantitative analysis of cell density was performed on in vivo en face OCT images of corneal endothelial cells, and the results are in agreement with previously reported data. Our study may offer a practical guideline for designing OCT systems that allow for in vivo corneal endothelial cell imaging with high quality.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea

Bingyao Tan, Zohreh Hosseinaee, Le Han, Olivera Kralj, Luigina Sorbara, and Kostadinka Bizheva
Biomed. Opt. Express 9(12) 6569-6583 (2018)

Ultrahigh-resolution OCT imaging of the human cornea

René M. Werkmeister, Sabina Sapeta, Doreen Schmidl, Gerhard Garhöfer, Gerald Schmidinger, Valentin Aranha dos Santos, Gerold C. Aschinger, Isabella Baumgartner, Niklas Pircher, Florian Schwarzhans, Anca Pantalon, Harminder Dua, and Leopold Schmetterer
Biomed. Opt. Express 8(2) 1221-1239 (2017)

In vivo high resolution human corneal imaging using full-field optical coherence tomography

Viacheslav Mazlin, Peng Xiao, Eugénie Dalimier, Kate Grieve, Kristina Irsch, José-Alain Sahel, Mathias Fink, and A. Claude Boccara
Biomed. Opt. Express 9(2) 557-568 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
    [Crossref]
  2. J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
    [Crossref]
  3. M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
    [Crossref]
  4. M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
    [Crossref]
  5. W. M. Bourne and H. E. Kaufman, “Specular microscopy of human corneal endothelium in vivo,” Am. J. Ophthalmol. 81(3), 319–323 (1976).
    [Crossref]
  6. E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
    [Crossref]
  7. A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
    [Crossref]
  8. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).
  9. V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557–568 (2018).
    [Crossref]
  10. K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
    [Crossref]
  11. V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
    [Crossref]
  12. R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
    [Crossref]
  13. B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara, and K. Bizheva, “250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea,” Biomed. Opt. Express 9(12), 6569–6583 (2018).
    [Crossref]
  14. A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
    [Crossref]
  15. K. Bizheva, B. Tan, B. MacLellan, Z. Hosseinaee, E. Mason, D. Hileeto, and L. Sorbara, “In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography,” Biomed. Opt. Express 8(9), 4141–4151 (2017).
    [Crossref]
  16. P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).
  17. M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
    [Crossref]
  18. M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
    [Crossref]
  19. M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
    [Crossref]
  20. B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
    [Crossref]
  21. F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
    [Crossref]
  22. M. Foracchia and A. Ruggeri, “Automatic estimation of endothelium cell density in donor corneas by means of Fourier analysis,” Med. Biol. Eng. Comput. 42(5), 725–731 (2004).
    [Crossref]
  23. A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
    [Crossref]
  24. F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
    [Crossref]
  25. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref]
  26. J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
    [Crossref]
  27. S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018).
    [Crossref]

2019 (3)

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

2018 (4)

2017 (4)

2016 (2)

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

2015 (3)

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]

2014 (2)

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref]

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

2012 (1)

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

2009 (1)

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

2005 (1)

A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
[Crossref]

2004 (1)

M. Foracchia and A. Ruggeri, “Automatic estimation of endothelium cell density in donor corneas by means of Fourier analysis,” Med. Biol. Eng. Comput. 42(5), 725–731 (2004).
[Crossref]

2003 (1)

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

1997 (1)

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

1976 (1)

W. M. Bourne and H. E. Kaufman, “Specular microscopy of human corneal endothelium in vivo,” Am. J. Ophthalmol. 81(3), 319–323 (1976).
[Crossref]

Andrew, S.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Ang, M.

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Aranha dos Santos, V.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

Aschinger, G. C.

Baskaran, M.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

Baudouin, C.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Baumgartner, I.

Bizheva, K.

Blatter, C.

Boccara, A. C.

Bose, S.

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Bourne, W. M.

W. M. Bourne and H. E. Kaufman, “Specular microscopy of human corneal endothelium in vivo,” Am. J. Ophthalmol. 81(3), 319–323 (1976).
[Crossref]

Brooks, D.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Buckley, R. J.

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

Canavesi, C.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Chen, S.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Chua, J.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

Chuck, R. S.

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

Dalimier, E.

Dawson, W.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Dogru, M.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

dos Santos, V. A.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]

Draxinger, W.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Drexler, W.

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

Dua, H.

Efron, N.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Eibl, M.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Escudero, J. C.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Fink, M.

Fitzke, F. W.

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

Foracchia, M.

M. Foracchia and A. Ruggeri, “Automatic estimation of endothelium cell density in donor corneas by means of Fourier analysis,” Med. Biol. Eng. Comput. 42(5), 725–731 (2004).
[Crossref]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

Gain, P.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Garhoefer, G.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

Garhofer, G.

Goh, G.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Gore, P. K.

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

Grieve, K.

Grisan, E.

A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
[Crossref]

Groschl, M.

Guthoff, R. F.

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

Hajialamdari, M.

Hamrah, P.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Han, L.

He, Z.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Hermand, J.-P.

Hileeto, D.

Hillenaar, T.

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Hindman, H. B.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Hosseinaee, Z.

Htoon, H. M.

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Huber, R.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Irsch, K.

Jaroszewski, J.

A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
[Crossref]

Kallberg, M.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Kaufman, H. E.

W. M. Bourne and H. E. Kaufman, “Specular microscopy of human corneal endothelium in vivo,” Am. J. Ophthalmol. 81(3), 319–323 (1976).
[Crossref]

Klee, J.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Klein, T.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Kojima, T.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Kolb, J. P.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Komaromy, A.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Konstantopoulos, A.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Kralj, O.

Kucera, M.

Kumar, A.

Lee, J. K.

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

Leitgeb, R. A.

Lépine, T.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Lim, C.-Y.

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

Lim, F.

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Liu, L.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Liu, X.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Luengo Hendriks, C. L.

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Lwin, N. C.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

MacLelan, B.

MacLellan, B.

Mason, E.

Masters, B. R.

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

Mazlin, V.

Mehta, J. S.

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Meijer, E. F. J.

Ollivier, F.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Pantalon, A.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

Park, C. Y.

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

Patel, S. V.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Pfeiffer, T.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Pfister, M.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

Pflugfelder, S. C.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Pircher, M.

Pircher, N.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

Rieger, B.

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Rolland, J. P.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Ruggeri, A.

A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
[Crossref]

M. Foracchia and A. Ruggeri, “Automatic estimation of endothelium cell density in donor corneas by means of Fourier analysis,” Med. Biol. Eng. Comput. 42(5), 725–731 (2004).
[Crossref]

Sahel, J.-A.

Sapeta, S.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

Sapp, H.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Schmetterer, L.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]

Schmidinger, G.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

Schmidl, D.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]

Schwarzhans, F.

Seah, X.

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Selig, B.

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Sherwood, M.

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

Siddiqui, M.

Sorbara, L.

Speedwell, L.

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

Stachs, O.

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

Stave, J.

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

Tan, B.

Tan, D.

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Tan, D. T.

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

Tankam, P.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Thuret, G.

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Tozburun, S.

Unterhuber, A.

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

V. A. dos Santos, L. Schmetterer, M. Groschl, G. Garhofer, D. Schmidl, M. Kucera, A. Unterhuber, J.-P. Hermand, and R. M. Werkmeister, “In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography,” Opt. Express 23(16), 21043–21063 (2015).
[Crossref]

Vakoc, B. J.

Vermeer, K. A.

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Villani, E.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Werkmeister, R. M.

Wieser, W.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Wilkins, M. R.

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

Woo, J. H.

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

Xiao, P.

Zawadzki, R. J.

Zhivov, A.

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

Acta Ophthalmol. (1)

A. Pantalon, M. Pfister, V. Aranha dos Santos, S. Sapeta, A. Unterhuber, N. Pircher, G. Schmidinger, G. Garhofer, D. Schmidl, and L. Schmetterer, “Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing,” Acta Ophthalmol. 97(5), e761–e771 (2019).
[Crossref]

Am. J. Ophthalmol. (2)

J. H. Woo, M. Ang, H. M. Htoon, and D. T. Tan, “Descemet membrane endothelial keratoplasty versus descemet stripping automated endothelial keratoplasty and penetrating keratoplasty,” Am. J. Ophthalmol. 207, 288–303 (2019).
[Crossref]

W. M. Bourne and H. E. Kaufman, “Specular microscopy of human corneal endothelium in vivo,” Am. J. Ophthalmol. 81(3), 319–323 (1976).
[Crossref]

Biomed. Opt. Express (7)

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref]

R. M. Werkmeister, S. Sapeta, D. Schmidl, G. Garhofer, G. Schmidinger, V. Aranha dos Santos, G. C. Aschinger, I. Baumgartner, N. Pircher, F. Schwarzhans, A. Pantalon, H. Dua, and L. Schmetterer, “Ultrahigh-resolution OCT imaging of the human cornea,” Biomed. Opt. Express 8(2), 1221–1239 (2017).
[Crossref]

M. Pircher and R. J. Zawadzki, “Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).
[Crossref]

K. Bizheva, B. Tan, B. MacLellan, Z. Hosseinaee, E. Mason, D. Hileeto, and L. Sorbara, “In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography,” Biomed. Opt. Express 8(9), 4141–4151 (2017).
[Crossref]

V. Mazlin, P. Xiao, E. Dalimier, K. Grieve, K. Irsch, J.-A. Sahel, M. Fink, and A. C. Boccara, “In vivo high resolution human corneal imaging using full-field optical coherence tomography,” Biomed. Opt. Express 9(2), 557–568 (2018).
[Crossref]

S. Tozburun, C. Blatter, M. Siddiqui, E. F. J. Meijer, and B. J. Vakoc, “Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser,” Biomed. Opt. Express 9(3), 952–961 (2018).
[Crossref]

B. Tan, Z. Hosseinaee, L. Han, O. Kralj, L. Sorbara, and K. Bizheva, “250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea,” Biomed. Opt. Express 9(12), 6569–6583 (2018).
[Crossref]

BMC Med. Imaging (1)

B. Selig, K. A. Vermeer, B. Rieger, T. Hillenaar, and C. L. Luengo Hendriks, “Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy,” BMC Med. Imaging 15(1), 13 (2015).
[Crossref]

Br. J. Ophthalmol. (3)

A. Ruggeri, E. Grisan, and J. Jaroszewski, “A new system for the automatic estimation of endothelial cell density in donor corneas,” Br. J. Ophthalmol. 89(3), 306–311 (2005).
[Crossref]

M. Ang, M. R. Wilkins, J. S. Mehta, and D. Tan, “Descemet membrane endothelial keratoplasty,” Br. J. Ophthalmol. 100(1), 15–21 (2016).
[Crossref]

A. Zhivov, O. Stachs, J. Stave, and R. F. Guthoff, “In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium,” Br. J. Ophthalmol. 93(5), 667–672 (2009).
[Crossref]

Curr. Eye Res. (1)

E. Villani, C. Baudouin, N. Efron, P. Hamrah, T. Kojima, S. V. Patel, S. C. Pflugfelder, A. Zhivov, and M. Dogru, “In vivo confocal microscopy of the ocular surface: from bench to bedside,” Curr. Eye Res. 39(3), 213–231 (2014).
[Crossref]

Exp. Eye Res. (2)

F. Ollivier, D. Brooks, A. Komaromy, M. Kallberg, S. Andrew, H. Sapp, M. Sherwood, and W. Dawson, “Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension,” Exp. Eye Res. 76(6), 671–677 (2003).
[Crossref]

F. W. Fitzke, B. R. Masters, R. J. Buckley, and L. Speedwell, “Fourier transform analysis of human corneal endothelial specular photomicrographs,” Exp. Eye Res. 65(2), 205–214 (1997).
[Crossref]

Med. Biol. Eng. Comput. (1)

M. Foracchia and A. Ruggeri, “Automatic estimation of endothelium cell density in donor corneas by means of Fourier analysis,” Med. Biol. Eng. Comput. 42(5), 725–731 (2004).
[Crossref]

Ophthalmology (2)

C. Y. Park, J. K. Lee, P. K. Gore, C.-Y. Lim, and R. S. Chuck, “Keratoplasty in the United States: a 10-year review from 2005 through 2014,” Ophthalmology 122(12), 2432–2442 (2015).
[Crossref]

M. Ang, J. S. Mehta, F. Lim, S. Bose, H. M. Htoon, and D. Tan, “Endothelial cell loss and graft survival after Descemet's stripping automated endothelial keratoplasty and penetrating keratoplasty,” Ophthalmology 119(11), 2239–2244 (2012).
[Crossref]

Opt. Express (2)

PLoS One (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS One 14(3), e0213144 (2019).
[Crossref]

Prog. Retinal Eye Res. (1)

M. Ang, M. Baskaran, R. M. Werkmeister, J. Chua, D. Schmidl, V. A. dos Santos, G. Garhoefer, J. S. Mehta, and L. Schmetterer, “Anterior segment optical coherence tomography,” Prog. Retinal Eye Res. 66, 132–156 (2018).
[Crossref]

Sci. Rep. (1)

M. Ang, A. Konstantopoulos, G. Goh, H. M. Htoon, X. Seah, N. C. Lwin, X. Liu, S. Chen, L. Liu, and J. S. Mehta, “Evaluation of a micro-optical coherence tomography for the corneal endothelium in an animal model,” Sci. Rep. 6(1), 29769 (2016).
[Crossref]

Other (2)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer Science & Business Media, 2008).

P. Tankam, Z. He, G. Thuret, H. B. Hindman, C. Canavesi, J. C. Escudero, T. Lépine, P. Gain, and J. P. Rolland, Capabilities of Gabor-Domain Optical Coherence Microscopy for the Assessment of Corneal Disease (SPIE, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The schematic of the UHR SD-OCT system. (b) The source spectrum read from the spectrometer. (c) (d) (e) The 1951 USAF resolution target imaged with 4x, 10x, and 20x objectives, respectively. The lateral resolution for each objective is read out as the line width of the last resolvable group, which is 7.8 µm, 3.1 µm, and 2.2 µm for 4x, 10x, and 20x objective respectively.
Fig. 2.
Fig. 2. En face OCT images as well as its corresponding spatial frequency spectra of the hexagonal grid taken with (a) 20X, (b) 10X, and (c) 4X objectives, respectively. The spatial sampling interval was 0.85 µm, 1.73 µm, and 3.46 µm for 20X, 10X, and 4X objectives, respectively. The characteristic frequency, marked by “r”, was measured to be 42.4/1024 px−1 and 83.7/1024 px−1 for 20X and 10X maps, respectively. The 4X objective failed to resolve the periodic grid patterns and therefore the characteristic frequency was not given here. Inset: white light camera image of the hexagonal grid. Scale bar: 200 µm.
Fig. 3.
Fig. 3. Monkey corneal endothelial cell maps acquired using the 10X objective (a) (c) in vivo and (b) (d) ex vivo. (a) (b) FOV: 1.037 mm by 1.037 mm. (c) (d) FOV: 0.691 mm by 0.691 mm. Left top: animal management for in vivo imaging. Left bottom: the IVCM image of the same eye. Arrow: fast scan direction. Insets: spatial frequency spectra of the corresponding en face cell maps. Scale bar: 200 µm.
Fig. 4.
Fig. 4. Monkey corneal endothelial cell maps acquired using the 20X objective (a) in vivo and (b) ex vivo, with a FOV of 0.343 mm by 0.343 mm and 0.510 mm by 0.510 mm, respectively. Insets: spatial frequency spectra of the corresponding en face cell maps. Scale bar: 200 µm.
Fig. 5.
Fig. 5. The impact of OCT axial resolution on en face visualization of corneal endothelial cell map. (a) Representative OCT B-scan of the Monkey cornea with the original axial resolution (∼ 2 µm in tissue). (b) The same B-scan with the axial resolution reduced by half (∼4 µm in tissue) and (c) quarter (∼ 8 µm in tissue). (d)–(f) The en face corneal endothelial cell images generated from the MP of the endothelial layer stacks of the respective volumes with different axial resolutions. Inset: histology slide of the cornea. The star (*) indicates the Bowman’s layer, and the arrow indicates the Descemet's membrane. Scale bar: 200 µm
Fig. 6.
Fig. 6. The averaged radial power spectra reconstructed from the 2D FFT maps for in vivo and ex vivo corneal endothelial cell maps with FOV of (a) 0.691 mm by 0.691 mm and (b) 1.037 mm by 1.037 mm). In (a), salient peaks were observed at f = 60.3 mm−1 and 61.9 mm−1 for in vivo and ex vivo images, respectively. In (b), less salient peaks were observed at f = 62.2 mm−1 and 61.0 mm−1 for in vivo and ex vivo images, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = 2 3 a 1 .
D = f 2 α ,

Metrics