Abstract

We develop a suitable geometrical-optics approach and demonstrate that it is possible to measure the optical density (OD) of bacterial cultures using a light emitting diode (LED)-based photometer. We measure both attenuation and spot-size variation, and we compensate for diffraction and stray-light impairment related to the incoherent source and large detection area. The approach is validated for different concentrations of two bacterial species, Escherichia coli and Staphylococcus aureus, that present different shapes and clustering organization.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometrical-optics approach to increase the accuracy in LED-based photometers for point-of-care testing

Marco Marsan, Massimiliano Lucidi, Francesco Pudda, Mattia Pirolo, Emanuela Frangipani, Paolo Visca, and Gabriella Cincotti
Biomed. Opt. Express 10(7) 3654-3662 (2019)

Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates

Samantha E. McBirney, Kristy Trinh, Annie Wong-Beringer, and Andrea M. Armani
Biomed. Opt. Express 7(10) 4034-4042 (2016)

High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics

Murugesan Venkatapathi, Bartek Rajwa, Kathy Ragheb, Padmapriya P. Banada, Todd Lary, J. Paul Robinson, and E. Daniel Hirleman
Appl. Opt. 47(5) 678-686 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
    [Crossref]
  2. M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
    [Crossref]
  3. M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.
  4. M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
    [Crossref]
  5. A. L. Koch, “Turbidity measurements of bacterial cultures in some available commercial instruments,” Anal. Biochem. 38(1), 252–259 (1970).
    [Crossref]
  6. K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
    [Crossref]
  7. S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
    [Crossref]
  8. H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
    [Crossref]
  9. S. E. Harding, “Applications of light scattering in microbiology,” Biotechnol. Appl. Biochem. 8(6), 489–509 (1986).
  10. H. C. Van De Hulst, Light Scattering by Small Particles (Dover, 1953).
  11. A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
    [Crossref]
  12. L. Wind and W. W. Szymanski, “Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media,” Meas. Sci. Technol. 13(3), 270–275 (2002).
    [Crossref]
  13. J. V. Lawrence and S. Maier, “Correction for the inherent error in optical density readings,” Appl. Environ. Microbiol. 33(2), 482–484 (1977).
  14. A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
    [Crossref]
  15. X. Sun, X. Li, and L. Ma, “A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs,” Opt. Express 19(24), 23932–23937 (2011).
    [Crossref]
  16. K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
    [Crossref]
  17. M. Marsan, M. Lucidi, F. Pudda, M. Pirolo, E. Frangipani, P. Visca, and G. Cincotti, “A geometrical-optics approach to increase the accuracy in LED-based photometers for point-of-care testing,” Biomed. Opt. Express 10(7), 3654–3662 (2019).
    [Crossref]
  18. J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
    [Crossref]
  19. https://www.we-lab.it/en/welabmaker
  20. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1277 (1986).
    [Crossref]
  21. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 3rd edition (Springer, 1996).
  22. G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4(8), 886–892 (2017).
    [Crossref]
  23. M. Marsan, M. Lucidi, and G. Cincotti, “LED-based spectrophotometry,” 13th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Hong Kong (2018).

2019 (1)

2018 (2)

A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
[Crossref]

J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
[Crossref]

2017 (2)

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

G. Osnabrugge, R. Horstmeyer, I. N. Papadopoulos, B. Judkewitz, and I. M. Vellekoop, “Generalized optical memory effect,” Optica 4(8), 886–892 (2017).
[Crossref]

2016 (3)

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

2015 (1)

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

2014 (1)

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

2011 (1)

2010 (1)

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

2003 (1)

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

2002 (1)

L. Wind and W. W. Szymanski, “Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media,” Meas. Sci. Technol. 13(3), 270–275 (2002).
[Crossref]

1986 (2)

M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1277 (1986).
[Crossref]

S. E. Harding, “Applications of light scattering in microbiology,” Biotechnol. Appl. Biochem. 8(6), 489–509 (1986).

1977 (1)

J. V. Lawrence and S. Maier, “Correction for the inherent error in optical density readings,” Appl. Environ. Microbiol. 33(2), 482–484 (1977).

1970 (1)

A. L. Koch, “Turbidity measurements of bacterial cultures in some available commercial instruments,” Anal. Biochem. 38(1), 252–259 (1970).
[Crossref]

Ahmed, M.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Alfano, R. R.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Alhede, M.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Alimova, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Arlt, J.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Bastiaans, M. J.

M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1277 (1986).
[Crossref]

Bjarnsholt, T.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Boulet, G.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Boyerb, S.

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

Braescu, L.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Chen, C.-R.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Cincotti, G.

Clais, S.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Clark, I. B.

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

Cos, P.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Dawson, A.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

de Dieu Habimana, J.

J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
[Crossref]

Delputte, P.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Drancourta, M.

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

Frangipani, E.

Furtmann, C.

A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
[Crossref]

Grossi, M.

M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.

Harding, S. E.

S. E. Harding, “Applications of light scattering in microbiology,” Biotechnol. Appl. Biochem. 8(6), 489–509 (1986).

Horstmeyer, R.

Huang, R.-N.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Jensen, PØ

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Jepson, A.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Ji, J.

J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
[Crossref]

Jose, J.

A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
[Crossref]

Judkewitz, B.

Katz, A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Koch, A. L.

A. L. Koch, “Turbidity measurements of bacterial cultures in some available commercial instruments,” Anal. Biochem. 38(1), 252–259 (1970).
[Crossref]

Kragh, K. N.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Kuo, T.-C.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Lanckacker, E.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Lawrence, J. V.

J. V. Lawrence and S. Maier, “Correction for the inherent error in optical density readings,” Appl. Environ. Microbiol. 33(2), 482–484 (1977).

Li, X.

Lin, C.-C.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Lin, H.-C.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Lin, H.-L.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Lin, Y.-J.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Lucidi, M.

Ma, L.

Maes, L.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Maier, S.

J. V. Lawrence and S. Maier, “Correction for the inherent error in optical density readings,” Appl. Environ. Microbiol. 33(2), 482–484 (1977).

Marsan, M.

Martinez, V. A.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

McCormick, S. A.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

McVey, A. F.

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

Meyers, A.

A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
[Crossref]

Michel-Lepagea, A.

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

Miroli, D.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Ng, A.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Osnabrugge, G.

Papadopoulos, I. N.

Parolin, C.

M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.

Pilizota, T.

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Pirolo, M.

Poon, W. C. K.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Pudda, F.

Raoulta, D.

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

Riccò, B.

M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.

Risken, H.

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 3rd edition (Springer, 1996).

Rosen, R. B.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Rudolph, E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Rybtke, M.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Safavieh, M.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Savage, H. E.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Schwarz-Linek, J.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Shah, M. K.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Shih, C.-M.

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

Sokullu, E.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Stavnsberg, C.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Stevenson, K.

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

Sun, X.

J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
[Crossref]

X. Sun, X. Li, and L. Ma, “A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs,” Opt. Express 19(24), 23932–23937 (2011).
[Crossref]

Swain, P. S.

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

Szymanski, W. W.

L. Wind and W. W. Szymanski, “Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media,” Meas. Sci. Technol. 13(3), 270–275 (2002).
[Crossref]

Tolker-Nielsen, T.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, 1953).

Van kerckhoven, M.

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Vellekoop, I. M.

Visca, P.

Vissers, T.

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Vitali, B.

M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.

Whiteley, M.

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Wind, L.

L. Wind and W. W. Szymanski, “Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media,” Meas. Sci. Technol. 13(3), 270–275 (2002).
[Crossref]

Xu, M.

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

Zourob, M.

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Anal. Biochem. (1)

A. L. Koch, “Turbidity measurements of bacterial cultures in some available commercial instruments,” Anal. Biochem. 38(1), 252–259 (1970).
[Crossref]

Anal. Lett. (1)

J. de Dieu Habimana, J. Ji, and X. Sun, “Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics,” Anal. Lett. 51(18), 2933–2966 (2018).
[Crossref]

Analyst (1)

M. Safavieh, M. Ahmed, E. Sokullu, A. Ng, L. Braescu, and M. Zourob, “A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection,” Analyst 139(2), 482–487 (2014).
[Crossref]

Appl. Environ. Microbiol. (3)

H.-L. Lin, C.-C. Lin, Y.-J. Lin, H.-C. Lin, C.-M. Shih, C.-R. Chen, R.-N. Huang, and T.-C. Kuo, “Revisiting with a relative-density calibration approach the determination of growth rates of microorganisms by use of optical density data from liquid cultures,” Appl. Environ. Microbiol. 76(5), 1683–1685 (2010).
[Crossref]

J. V. Lawrence and S. Maier, “Correction for the inherent error in optical density readings,” Appl. Environ. Microbiol. 33(2), 482–484 (1977).

K. N. Kragh, M. Alhede, M. Rybtke, C. Stavnsberg, PØ Jensen, T. Tolker-Nielsen, M. Whiteley, and T. Bjarnsholt, “Inoculation method could impact the outcome of microbiological experiments,” Appl. Environ. Microbiol. 84(5), e02264 (2017).
[Crossref]

Biomed. Opt. Express (1)

Biotechnol. Appl. Biochem. (1)

S. E. Harding, “Applications of light scattering in microbiology,” Biotechnol. Appl. Biochem. 8(6), 489–509 (1986).

Clin. Microbiol. Rev. (1)

M. Drancourta, A. Michel-Lepagea, S. Boyerb, and D. Raoulta, “The point-of-care laboratory in clinical microbiology,” Clin. Microbiol. Rev. 29(3), 429–447 (2016).
[Crossref]

Colloids Surf., B (1)

J. Schwarz-Linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers, D. Miroli, T. Pilizota, V. A. Martinez, and W. C. K. Poon, “Escherichia coli as a model active colloid: A practical introduction,” Colloids Surf., B 137, 2–16 (2016).
[Crossref]

Enzyme Microb. Technol. (1)

A. Meyers, C. Furtmann, and J. Jose, “Direct optical density determination of bacterial cultures in microplates for high-throughput screening applications,” Enzyme Microb. Technol. 118, 1–5 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Katz, A. Alimova, M. Xu, E. Rudolph, M. K. Shah, H. E. Savage, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Bacteria size determination by elastic light scattering,” IEEE J. Sel. Top. Quantum Electron. 9(2), 277–287 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3(8), 1277 (1986).
[Crossref]

Lett. Appl. Microbiol. (1)

S. Clais, G. Boulet, M. Van kerckhoven, E. Lanckacker, P. Delputte, L. Maes, and P. Cos, “Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis,” Lett. Appl. Microbiol. 60(1), 79–84 (2015).
[Crossref]

Meas. Sci. Technol. (1)

L. Wind and W. W. Szymanski, “Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media,” Meas. Sci. Technol. 13(3), 270–275 (2002).
[Crossref]

Opt. Express (1)

Optica (1)

Sci. Rep. (1)

K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, “General calibration of microbial growth in microplate readers,” Sci. Rep. 6(1), 38828 (2016).
[Crossref]

Other (5)

M. Grossi, C. Parolin, B. Vitali, and B. Riccò, “Measurement of bacterial concentration using a portable sensor system with a combined electrical-optical approach,” to appear in IEEE Sens. J.

H. C. Van De Hulst, Light Scattering by Small Particles (Dover, 1953).

https://www.we-lab.it/en/welabmaker

M. Marsan, M. Lucidi, and G. Cincotti, “LED-based spectrophotometry,” 13th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Hong Kong (2018).

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, 3rd edition (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Spectrophotometer layout (drawing not in scale). (b) Confocal microscopy images of E. coli DH5α and S. aureus ATCC25923. Merged differential interference contrast (DIC) and DAPI images.
Fig. 2.
Fig. 2. Artificial-color rendering of raw images for S. aureus bacterial suspension at different concentrations. (a) without cuvette; (b) saline solution (blank); (c) bacterial suspension at dilution ratios of 1:32; (d) 1:4; (e) 1:2; (f) 1:1.
Fig. 3.
Fig. 3. (a) Axial beam profiles. (b) Axial beam profiles normalized to their own maxima. Data have been smoothed with a moving-average filter only for plot rendering. It is evident that, due to the scattering process, the spot-size increases with the number of cells.
Fig. 4.
Fig. 4. Beam spot-size variation versus OD parameter measured with the reference spectrophotometer BioPhotometer basic. Red (blue) diamonds refer to measured values for E. coli (S. aureus) cultures, and the black line represents the model of Eq. (16).
Fig. 5.
Fig. 5. OD measurements (and relative errors) of (a) S. aureus ATCC25923 and (b) E. coli DH5α bacterial suspensions, obtained with the LED-based photometer, two commercial spectrophotometers and two multi-label plate readers. The errors have been evaluated with respect to the OD values obtained with the reference spectrophotometer BioPhotometer basic.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Φ t Φ i = 10 A = e α h .
W ( r , k , z ) z + k x k 0 W ( r , k , z ) x + k y k 0 W ( r , k , z ) y = q k 0 2 ( 2 W ( r , k , z ) 2 k x + 2 W ( r , k , z ) 2 k y ) ,
W ( r , k , z ) = W ( r k k 0 z , k , 0 ) .
W ( r , k , z ) = 3 4 π 2 q 2 k o 2 z 4 × W ( r , k , 0 ) e 3 q z 3 ( | r r k k 0 z | 2 z k 0 ( k k ) ( r r k k 0 z ) + z 2 3 k 0 2 | k k | 2 ) d 2 r d 2 k = W ( r , k , 0 ) K k ( k k ) K r ( r r k + k 2 k 0 z ) d 2 r d 2 k .
K k ( k k ) = 1 4 π q z k o 2 e | k k | 2 4 q z k 0 2
K r ( r r k + k 2 k 0 z ) = 3 π q z 3 e 3 q z 3 | r r k + k 2 k 0 z | 2
e α h = 1 α h = 1 | k | 2 2 k o 2 = 1 1 2 k o 2 | k | 2 W ( r , k , z = h ) d 2 k W ( r , k , z = h ) d 2 k .
W ( r , k , 0 ) = Φ 1 δ ( k ) ,
W ( r , k , z = h ) = Φ 1 4 π q h k 0 2 e | k | 2 4 q h k 0 2 .
W ( r , k , z ) = 3 4 π q z 3 Φ ( r ) e 3 4 q z 3 | r r k k 0 z | 2 d 2 r ,
W ( r , k , 0 ) = Φ ( r ) = 4 Φ 1 π D 1 2 e 4 | r | 2 D 1 2 .
Φ i ( r ) = 4 Φ 2 π D 2 2 e 4 | r | 2 D 2 2 .
W ( r , k , z ) = 4 Φ 2 π D 2 ( z ) e 4 ( r k k 0 z ) 2 D 2 ( z ) ,
D 2 ( z ) = D 2 2 + 16 3 q z 3 .
D 2 ( h ) = D 2 2 + 16 3 0.29 A h 2 = D 2 2 + 18.4 A h 2 .
D ( h ) | k | 2 k o 2 = D 2 2 + 18.4 A h 2 2 e α h / 2 = D 2 2 + 18.4 A h 2 2 e 1.16 A .