Abstract

A spectroscopic detection system for the accurate monitoring of carbon dioxide (CO2) in exhaled breath was realized by tunable diode laser absorption spectroscopy (TDLAS) in conjunction with a vertical-cavity surface-emitting laser (VCSEL) and a multipass cell with an effective optical path-length of 20 m. The VCSEL diode emitting light with an output power of 0.8 mW, covered the strong absorption line of CO2 at 6330.82 cm−1 by drive-current tuning. The minimum detectable concentration of 0.769‰ for CO2 detection was obtained, and a measurement precision of approximately 100 ppm was achieved with an integration time of 168 s. Real-time online measurements were carried out for the detection of CO2 expirograms from healthy subjects, different concentrations were obtained in dead space and alveolar gas. The exhaled CO2 increased significantly with the increasing physical activity, reaches its maximal value at the beginning of respiratory compensation and then decreased slightly until maximal exercise. The developed measurement system has a great potential to be applied in practice for the detection of pulmonary diseases associated with CO2 retention.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

C. B. Roller, B. P. Holland, G. McMillen, D. L. Step, C. R. Krehbiel, K. Namjou, and P. J. McCann
Appl. Opt. 46(8) 1333-1342 (2007)

Simultaneous NO and CO2 measurement in human breath with a single IV–VI mid-infrared laser

C. Roller, K. Namjou, J. Jeffers, W. Potter, P. J. McCann, and J. Grego
Opt. Lett. 27(2) 107-109 (2002)

Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer

Pratyuma C. Kamat, Chad B. Roller, Khosrow Namjou, James D. Jeffers, Ali Faramarzalian, Rodolfo Salas, and Patrick J. McCann
Appl. Opt. 46(19) 3969-3975 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
    [Crossref]
  2. V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).
  3. H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
    [Crossref]
  4. A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
    [Crossref]
  5. C. Wang and S. Peeyush, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
    [Crossref]
  6. C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
    [Crossref]
  7. F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
    [Crossref]
  8. T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
    [Crossref]
  9. C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
    [Crossref]
  10. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45(36), 9230–9237 (2006).
    [Crossref]
  11. Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
    [Crossref]
  12. Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
    [Crossref]
  13. B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).
  14. L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
    [Crossref]
  15. S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
    [Crossref]
  16. H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).
  17. E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
    [Crossref]
  18. T. Milde, M. Hoppe, H. Tatenguem, M. Mordmuller, J. O’Gorman, U. Willer, W. Schade, and J. Sacher, “QEPAS sensor for breath analysis: a behavior of pressure,” Appl. Opt. 57(10), C120 (2018).
    [Crossref]
  19. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
    [Crossref]
  20. C. Roller, K. Namjou, and J. Jeffers, “Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser,” Opt. Lett. 27(2), 107–109 (2002).
    [Crossref]
  21. K. Namjou, C. B. Roller, and G. Mcmillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” Sensors, IEEE (2007).
  22. M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
    [Crossref]
  23. R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
    [Crossref]
  24. Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
    [Crossref]
  25. L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528 (2016).
    [Crossref]
  26. L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
    [Crossref]
  27. A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor,” Appl. Spectrosc. 69(2), 257–268 (2015).
    [Crossref]
  28. K. Owen and A. Farooq, “A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f,” Appl. Phys. B: Lasers Opt. 116(2), 371–383 (2014).
    [Crossref]
  29. R. G. Tuve, “CRC Handbook of Tables for Applied Engineering Science, 2nd ed (CRC Press,1973).
  30. R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 µm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318 (2018).
    [Crossref]
  31. Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121 (2015).
    [Crossref]
  32. K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
    [Crossref]
  33. https://hitran.org/
  34. T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49(11), 111123 (2010).
    [Crossref]
  35. M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
    [Crossref]
  36. X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
    [Crossref]
  37. D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
    [Crossref]
  38. H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
    [Crossref]
  39. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
    [Crossref]
  40. P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
    [Crossref]
  41. A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
    [Crossref]
  42. J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
    [Crossref]

2019 (2)

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

2018 (2)

2017 (6)

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
[Crossref]

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
[Crossref]

2016 (3)

L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528 (2016).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

2015 (4)

A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor,” Appl. Spectrosc. 69(2), 257–268 (2015).
[Crossref]

Y. Cao, N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie, L. C. Hughes, C. Zah, and F. K. Tittel, “Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser,” Opt. Express 23(3), 2121 (2015).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

2014 (3)

Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
[Crossref]

K. Owen and A. Farooq, “A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f,” Appl. Phys. B: Lasers Opt. 116(2), 371–383 (2014).
[Crossref]

D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
[Crossref]

2013 (3)

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

2012 (1)

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

2011 (1)

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

2010 (2)

C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
[Crossref]

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49(11), 111123 (2010).
[Crossref]

2009 (3)

C. Wang and S. Peeyush, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

2006 (1)

2004 (1)

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

2002 (2)

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

C. Roller, K. Namjou, and J. Jeffers, “Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser,” Opt. Lett. 27(2), 107–109 (2002).
[Crossref]

2001 (1)

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

2000 (1)

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

1971 (1)

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Amal, H.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Ativanichayaphong, T.

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Azhar, M.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Bagchi, S.

S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
[Crossref]

Bai, Y.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Bellagambia, F.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Bi, X.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Bortz, P.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Braun, G.

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

Broza, Y. Y.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Cao, H.

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Cao, Y.

Cary, P.

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Che Man, Y. B.

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

Chen, F. J.

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

Chen, H.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Chen, J.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Chen, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Chen, Z.

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Chernyaeva, M. B.

V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).

Chiao, J.-C.

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Chilese, F. C.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Ching, Y. L.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Crosson, E. R.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Cui, R.

DiFrancesco, F.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Domracheva, E. G.

V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).

Dong, L.

Ebert, V.

Eto, Y.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Farooq, A.

K. Owen and A. Farooq, “A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f,” Appl. Phys. B: Lasers Opt. 116(2), 371–383 (2014).
[Crossref]

Ferrarib, C.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Filges, A.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Funka, K.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Furlan, I.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Gao, X.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Geiger, K.

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

Gerbig, C.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Ghimentia, S.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Ghorbani, R.

Glasser, J.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Griffin, R. J.

Gulich, T.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Güntner, A. T.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Guo, D.

D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
[Crossref]

Guo, X.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Guttmann, J.

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

Haase, C.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

Haick, H.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Hashim, D.

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

He, Q.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Herndon, S.

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Hoppe, M.

Hsu, L. C.

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Huang, X. Y.

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

Hughes, L. C.

Itoh, H.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Jäger, W.

Jeffers, J.

Jia, S.

Jiang, C.

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Jiang, W.

Kachanow, A. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Karion, A.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Kasayama, S.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Kato, K.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Kato, M.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Kazwala, R.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Kishikawa, R.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Kobayashi, T.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Kohler, M.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Kuramoto, D. S.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

Lan, L.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Lathan, P.

Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
[Crossref]

Lazzari, J.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Leja, M.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Li, C.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

L. Dong, F. K. Tittel, C. Li, N. P. Sanchez, H. Wu, C. Zheng, Y. Yu, A. Sampaolo, and R. J. Griffin, “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing,” Opt. Express 24(6), A528 (2016).
[Crossref]

Li, N.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Li, S.

Li, Y.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Liao, H.

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

Liepniece-Karele, I.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Liu, H.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Liu, K.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Liu, S.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Liu, Z.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Lomonacoa, T.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Lwanaga, T.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Lwilla, F.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Ma, W.

Machang’u, R. S.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Mandon, J.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Manne, J.

Matsumoto, A.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Mbi, A.

C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
[Crossref]

Mcmanus, B.

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Mcmillen, G.

K. Namjou, C. B. Roller, and G. Mcmillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” Sensors, IEEE (2007).

Merkus, P. J. F. M.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Mfinanga, G.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Mgode, G. F.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Milde, T.

Mink, J.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Miyatake, A.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Mohammed, A.

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

Momomura, S.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Mondal, S.

S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
[Crossref]

Mordmuller, M.

Namjou, K.

C. Roller, K. Namjou, and J. Jeffers, “Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser,” Opt. Lett. 27(2), 107–109 (2002).
[Crossref]

K. Namjou, C. B. Roller, and G. Mcmillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” Sensors, IEEE (2007).

Neerincx, A. H.

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Nelson, D. D.

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Nurjuliana, M.

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

O’Gorman, J.

Obase, Y.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Omata, M.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Owano, T. G.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Owen, K.

K. Owen and A. Farooq, “A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f,” Appl. Phys. B: Lasers Opt. 116(2), 371–383 (2014).
[Crossref]

Paldus, B. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Pauling, L.

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Peeyush, S.

C. Wang and S. Peeyush, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

Persiaa, R.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Pogány, A.

Prado, D.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Pratsinis, S. E.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Pripolzin, S. I.

V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).

Provencal, R. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Qiu, X.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Rella, C. W.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Ren, W.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Ricci, K. N.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Richman, B. A.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Risby, T. H.

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49(11), 111123 (2010).
[Crossref]

Robinson, A. B.

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Rocco, D.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Rocco, E.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Roller, C.

Roller, C. B.

K. Namjou, C. B. Roller, and G. Mcmillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” Sensors, IEEE (2007).

Rosa, C.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Saad, N. M. R.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

Sacher, J.

Salvoetal, P.

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Sampaolo, A.

Sanchez, N. P.

Schade, W.

Schmidt, F. M.

Schubert, J.

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

Sengupta, S.

S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
[Crossref]

Shepherd, M.

C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
[Crossref]

Shimoda, T.

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Sievi, N. A.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Silva, A.

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

Sin, J.

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Skapars, R.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Spence, T. G.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Spittler, K.

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

Sukhorukov, O.

Sun, M.

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Tan, S. M.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

Tan, T.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Tatenguem, H.

Teranishi, R.

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Theodore, S. J.

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

Tisch, U.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Tittel, F. K.

Todd, M. W.

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Tulip, J.

Tuve, R. G.

R. G. Tuve, “CRC Handbook of Tables for Applied Engineering Science, 2nd ed (CRC Press,1973).

Urbanski, S.

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Vaks, V. L.

V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).

Wagner, S.

Wang, C.

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
[Crossref]

C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
[Crossref]

C. Wang and S. Peeyush, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

Wang, G.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Wang, L.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Wang, Q.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Wang, Z.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
[Crossref]

Watanabe, H.

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

Weetjens, B. J.

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

Wei, J.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Werhahn, O.

Willer, U.

Winderlich, J.

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Wu, C. Y.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Wu, H.

Wu, Y.

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Xiao, L.

Xie, C.

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

Xie, F.

Xu, Z.

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

Yan, K.

D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
[Crossref]

Yang, X.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Yin, W.

Yu, Y.

Yuan, Y.

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Zah, C.

Zahniser, M. S.

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Zare, R. N.

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Zhang, D.

D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
[Crossref]

Zhang, G.

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

Zhang, L.

Zhang, W.

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Zhao, X.

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Zheng, C.

Zheng, F.

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Allergol. Int. (1)

T. Shimoda, Y. Obase, R. Kishikawa, T. Lwanaga, A. Miyatake, and S. Kasayama, “The Fractional Exhaled Nitric Oxide and Serum High Sensitivity C-Reactive Protein Levels in Cough Variant Asthma and Typical Bronchial Asthma,” Allergol. Int. 62(2), 251–257 (2013).
[Crossref]

Anal. Chem. (2)

A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, and S. E. Pratsinis, “Non-invasive body fat burn monitoring from exhaled acetone with Si-doped WO3 sensing nanoparticles,” Anal. Chem. 89(19), 10578–10584 (2017).
[Crossref]

E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanow, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (2)

K. Owen and A. Farooq, “A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f,” Appl. Phys. B: Lasers Opt. 116(2), 371–383 (2014).
[Crossref]

M. Azhar, J. Mandon, A. H. Neerincx, Z. Liu, J. Mink, and P. J. F. M. Merkus, “A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath,” Appl. Phys. B: Lasers Opt. 123(11), 268 (2017).
[Crossref]

Appl. Spectrosc. (1)

Atmos. Meas. Tech. (1)

H. Chen, A. Karion, C. W. Rella, J. Winderlich, C. Gerbig, and A. Filges, “Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique,” Atmos. Meas. Tech. 6(4), 1031–1040 (2013).
[Crossref]

Clinics (1)

E. Rocco, D. Prado, A. Silva, J. Lazzari, P. Bortz, D. Rocco, C. Rosa, and I. Furlan, “Effect of continuous and interval exercise training on the PETCO2 response during a graded exercise test in patients with coronary artery disease,” Clinics 67(6), 623–627 (2012).
[Crossref]

IEEE Sens. J. (3)

S. Bagchi, S. Sengupta, and S. Mondal, “Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health,” IEEE Sens. J. 17(5), 1384–1390 (2017).
[Crossref]

Z. Wang, C. Wang, and P. Lathan, “Breath Acetone Analysis of Diabetic Dogs Using a Cavity Ringdown Breath Analyzer,” IEEE Sens. J. 14(4), 1117–1123 (2014).
[Crossref]

C. Wang, A. Mbi, and M. Shepherd, “A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C,” IEEE Sens. J. 10(1), 54–63 (2010).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

D. Zhang, D. Guo, and K. Yan, “A Breath Analysis System for Diabetes Screening and Blood Glucose Level Prediction,” IEEE Trans. Biomed. Eng. 61(11), 2787–2795 (2014).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

L. Lan, J. Chen, Y. Wu, Y. Bai, X. Bi, and Y. Li, “Self-calibrated multiharmonic CO2 sensor using VCSEL for urban in situ measurement,” IEEE Trans. Instrum. Meas. 68(4), 1140–1147 (2019).
[Crossref]

Int J Tuberc Lung Dis. (1)

B. J. Weetjens, G. F. Mgode, R. S. Machang’u, R. Kazwala, G. Mfinanga, and F. Lwilla, “African pouched rats for the detection of pulmonary tuberculosis in sputum samples,” Int J Tuberc Lung Dis. 13(6), 737–743 (2009).

J. Am. Coll. Cardiol. (1)

A. Matsumoto, H. Itoh, Y. Eto, T. Kobayashi, M. Kato, M. Omata, H. Watanabe, K. Kato, and S. Momomura, “End-tidal CO2 pressure decreases during exercise in cardiac patients: association with severity of heart failure and cardiac output reserve,” J. Am. Coll. Cardiol. 36(1), 242–249 (2000).
[Crossref]

J. Anal. Bioanal. Tech. (1)

Z. Wang, M. Sun, X. Zhao, C. Jiang, Y. Li, and C. Wang, “Study of Breath Acetone in a Rat Mode of 126 Rats with Type 1 Diabetes,” J. Anal. Bioanal. Tech. 08(01), 1–7 (2017).
[Crossref]

J. Appl. Physiol. (1)

J. Schubert, K. Spittler, G. Braun, K. Geiger, and J. Guttmann, “CO2-controlled sampling of alveolar gas in mechanically ventilated patients,” J. Appl. Physiol. 90(2), 486–492 (2001).
[Crossref]

J. Breath Res. (1)

H. Amal, M. Leja, Y. Y. Broza, U. Tisch, K. Funka, I. Liepniece-Karele, R. Skapars, Z. Xu, H. Liu, and H. Haick, “Geographical variation in the exhaled volatile organic compounds,” J. Breath Res. 7(4), 047102 (2013).
[Crossref]

J. Thorac. Dis. (1)

F. J. Chen, H. Liao, X. Y. Huang, and C. Xie, “Importance of fractional exhaled nitric oxide in diagnosis of bronchiectasis accompanied with bronchial asthma,” J. Thorac. Dis. 8(5), 992–999 (2016).
[Crossref]

Meat Sci. (1)

M. Nurjuliana, Y. B. Che Man, D. Hashim, and A. Mohammed, “Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer,” Meat Sci. 88(4), 638–644 (2011).
[Crossref]

Med Eng Phys. (1)

P. Salvoetal, C. Ferrarib, R. Persiaa, S. Ghimentia, T. Lomonacoa, F. Bellagambia, and F. DiFrancesco, “A dual mode breath sampler for the collection of the end-tidal and dead space fractions,” Med Eng Phys. 37(6), 539–544 (2015).
[Crossref]

Opt. Eng. (1)

T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49(11), 111123 (2010).
[Crossref]

Opt. Express (4)

Opt. Laser. Eng. (1)

X. Guo, F. Zheng, C. Li, X. Yang, N. Li, S. Liu, J. Wei, X. Qiu, and Q. He, “A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy,” Opt. Laser. Eng. 115, 243–248 (2019).
[Crossref]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. (1)

R. N. Zare, D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. R. Saad, “High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance,” Proc. Natl. Acad. Sci. 106(27), 10928–10932 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

L. Pauling, A. B. Robinson, R. Teranishi, and P. Cary, “Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography,” Proc. Natl. Acad. Sci. U. S. A. 68(10), 2374–2376 (1971).
[Crossref]

Sens. Actuators, B (2)

Z. Wang, Q. Wang, Y. L. Ching, C. Y. Wu, G. Zhang, and W. Ren, “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser,” Sens. Actuators, B 246, 710–715 (2017).
[Crossref]

K. Liu, L. Wang, T. Tan, G. Wang, W. Zhang, W. Chen, and X. Gao, “Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell,” Sens. Actuators, B 220, 1000–1005 (2015).
[Crossref]

Sensors (2)

C. Wang and S. Peeyush, “Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors 9(10), 8230–8262 (2009).
[Crossref]

C. Jiang, M. Sun, Z. Wang, Z. Chen, X. Zhao, Y. Yuan, Y. Li, and C. Wang, “A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management,” Sensors 16(8), 1199 (2016).
[Crossref]

Spectrochim. Acta, Part A (1)

D. D. Nelson, B. Mcmanus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta, Part A 60(14), 3325–3335 (2004).
[Crossref]

Other (5)

https://hitran.org/

K. Namjou, C. B. Roller, and G. Mcmillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” Sensors, IEEE (2007).

R. G. Tuve, “CRC Handbook of Tables for Applied Engineering Science, 2nd ed (CRC Press,1973).

V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, and M. B. Chernyaeva, “Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research,” Terahertz Emitters, Receivers, and Applications VII (2016).

H. Cao, L. C. Hsu, T. Ativanichayaphong, J. Sin, and J.-C. Chiao, “A non-invasive and remote infant monitoring system using CO2 sensors,” Sensors IEEE, 989–992 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The absorption lines of O2, H2O and CO2 near 1579 nm taken from the HITRAN database [33].
Fig. 2.
Fig. 2. Schematic drawings of the experimental TDLAS setup.
Fig. 3.
Fig. 3. (a) The direct absorption signal of pure N2 and CO2 at different concentrations; (b) The measured 2f signal of CO2 with different concentration; (c) The relationship between the intensities of 2f signal and the concentration of CO2 at 2.5 kPa, 40-sweep average was used for minimizing the random error of each point.
Fig. 4.
Fig. 4. (a) 2f signals of CO2 with concentration of 2.5% and determined at a pressure of 2.5 kPa; (b) The recorded 10,000 data points concentration levels for a period of 4000 s and the corresponding Allan deviation plot.
Fig. 5.
Fig. 5. (a) Sequences of CO2 expirograms obtained from healthy 23-year-old male individual during tidal plus expiratory reserve volume breathing, each profile corresponds to a raw 2f signal; (b) Curves of recorded the exhaled CO2 concentration in three-phase of respiratory rhythm during a single exhalation; (c) Curves of recorded the exhaled CO2 concentration during normal breath at rest within 1 minutes.
Fig. 6.
Fig. 6. Photograph of the collection and measurement of CO2 in exhaled breath of healthy subject with workloads.
Fig. 7.
Fig. 7. (a) and (b) Trends in the exhaled CO2 of two volunteers over time during a rest and exercise from 0 to 220 W; (c) Extracting the mean value of the EtCO2 concentration at different loading levels of two volunteers

Tables (1)

Tables Icon

Table 1. The concentration and absorption characteristics of exhaled breath to laser at 1579.57 nm.