Abstract

Identifying positive surgical margins after resection of cancer often triggers re-excision and adjuvant treatments. Incomplete initial resections result in poorer patient outcomes, psychological and financial stress to the patient and increased healthcare costs. Surgical margins are typically assessed post-operatively using time consuming and expensive slide-based histopathology tissue analysis. Currently, a real-time non-contact virtual histology-like intraoperative margin assessment tool is not available. To address this need, we have developed a non-contact multi-wavelength reflection-mode, photoacoustic remote sensing (PARS) microscope demonstrating chromophore selective contrast in human tissues. We show the capabilities of multi-wavelength PARS microscopy utilizing both 266 nm and 532 nm excitation wavelengths and a 1310 nm detection wavelength. Cell nuclei and hemoglobin were visualized at the cellular scale without the addition of exogenous contrast agents. These works provide a critical step towards a virtual histology tool to provide intraoperative histology-like information in living tissue.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiscale nonlinear microscopy and widefield white light imaging enables rapid histological imaging of surgical specimen margins

Michael G. Giacomelli, Tadayuki Yoshitake, Lucas C. Cahill, Hilde Vardeh, Liza M. Quintana, Beverly E. Faulkner-Jones, Jeff Brooker, James L. Connolly, and James G. Fujimoto
Biomed. Opt. Express 9(5) 2457-2475 (2018)

Ultraviolet photoacoustic remote sensing microscopy

Nathaniel J. M. Haven, Kevan L. Bell, Pradyumna Kedarisetti, John D. Lewis, and Roger J. Zemp
Opt. Lett. 44(14) 3586-3589 (2019)

Slide-free virtual histochemistry (Part II): detection of field cancerization

Sixian You, Yi Sun, Eric J. Chaney, Youbo Zhao, Jianxin Chen, Stephen A. Boppart, and Haohua Tu
Biomed. Opt. Express 9(11) 5253-5268 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
    [Crossref]
  2. N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
    [Crossref]
  3. S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
    [Crossref]
  4. E. B. Desciak and M. E. Maloney, “Artifacts in frozen section preparation,” Dermatol. Surg. 26(5), 500–504 (2000).
    [Crossref]
  5. G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
    [Crossref]
  6. E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
    [Crossref]
  7. D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
    [Crossref]
  8. A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
    [Crossref]
  9. T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
    [Crossref]
  10. C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
    [Crossref]
  11. R. L. Nichols, “Preventing surgical site infections: A surgeon’s perspective,” Emerg. Infect Dis. 7(2), 220–224 (2001).
    [Crossref]
  12. P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
    [Crossref]
  13. P. H. Reza, K. Bell, W. Shi, J. Shapiro, and R. J. Zemp, “Deep non-contact photoacoustic initial pressure imaging,” Optica 5(7), 814–820 (2018).
    [Crossref]
  14. N. J. M. Haven, K. L. Bell, P. Kedarisetti, J. D. Lewis, and R. J. Zemp, “Ultraviolet photoacoustic remote sensing microscopy,” Opt. Lett. 44(14), 3586–3589 (2019).
    [Crossref]
  15. K. L. Bell, P. Hajireza, W. Shi, and R. J. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56(18), 5172–5181 (2017).
    [Crossref]
  16. K. Bell, P. Hajireza, and R. Zemp, “Scattering cross-sectional modulation in photoacoustic remote sensing microscopy,” Opt. Lett. 43(1), 146–149 (2018).
    [Crossref]
  17. S. Soltani, A. Ojaghi, and F. E. Robles, “Deep UV dispersion and absorption spectroscopy of biomolecules,” Biomed. Opt. Express 10(2), 487–499 (2019).
    [Crossref]
  18. J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).
  19. M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
    [Crossref]
  20. G. S. Adair and M. E. Robinson, “The specific refraction increments of serum-albumin and serum-globulin,” Biochem. J. 24(4), 993–1011 (1930).
    [Crossref]
  21. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
    [Crossref]
  22. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
    [Crossref]
  23. R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
    [Crossref]

2019 (2)

2018 (2)

2017 (3)

K. L. Bell, P. Hajireza, W. Shi, and R. J. Zemp, “Temporal evolution of low-coherence reflectrometry signals in photoacoustic remote sensing microscopy,” Appl. Opt. 56(18), 5172–5181 (2017).
[Crossref]

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

2016 (1)

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

2015 (1)

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

2013 (3)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

2010 (1)

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

2009 (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]

2008 (1)

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

2004 (2)

G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
[Crossref]

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref]

2001 (1)

R. L. Nichols, “Preventing surgical site infections: A surgeon’s perspective,” Emerg. Infect Dis. 7(2), 220–224 (2001).
[Crossref]

2000 (1)

E. B. Desciak and M. E. Maloney, “Artifacts in frozen section preparation,” Dermatol. Surg. 26(5), 500–504 (2000).
[Crossref]

1996 (1)

J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).

1995 (1)

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

1989 (1)

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

1930 (1)

G. S. Adair and M. E. Robinson, “The specific refraction increments of serum-albumin and serum-globulin,” Biochem. J. 24(4), 993–1011 (1930).
[Crossref]

Adair, G. S.

G. S. Adair and M. E. Robinson, “The specific refraction increments of serum-albumin and serum-globulin,” Biochem. J. 24(4), 993–1011 (1930).
[Crossref]

Aft, R. L.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Amalric, R.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Ayme, Y.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Bains, M. S.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Bell, K.

Bell, K. L.

Boppart, S. A.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Brandone, H.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Bressac, C.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Bricca, G. M.

G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
[Crossref]

Brodland, D. G.

G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
[Crossref]

Burt, M. E.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Canner, J. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Chan, C. J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

Chen, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Chen, R.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Cheng, J.-X.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

Cittadine, A. J.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Cote, R. J.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Creer, M. H.

J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).

Desciak, E. B.

E. B. Desciak and M. E. Maloney, “Artifacts in frozen section preparation,” Dermatol. Surg. 26(5), 500–504 (2000).
[Crossref]

Gabrielson, E.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Ginsberg, R. J.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Guck, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

Hai, P.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Hajireza, P.

Hans, D.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Haven, N. J. M.

Jacobs, L. K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Jacquemier, J.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Jones, J. H.

J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).

Kedarisetti, P.

Kurtz, J. M.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Larin, K. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

Lewis, J. D.

Li, R.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

Liu, C.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Luo, Q.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

Maloney, M. E.

E. B. Desciak and M. E. Maloney, “Artifacts in frozen section preparation,” Dermatol. Surg. 26(5), 500–504 (2000).
[Crossref]

Martini, N.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

May Gonzalez, E. A.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

McCormack, P.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

McHowat, J.

J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).

Müller, P.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

Nichols, R. L.

R. L. Nichols, “Preventing surgical site infections: A surgeon’s perspective,” Emerg. Infect Dis. 7(2), 220–224 (2001).
[Crossref]

Novack, D. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Ojaghi, A.

Paproski, R. J.

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Pietra, J.-C.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Pleitez, M. A.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Pollet, J.-F.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Pootrakul, L.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Preibisch, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]

Reza, P. H.

Robinson, M. E.

G. S. Adair and M. E. Robinson, “The specific refraction increments of serum-albumin and serum-globulin,” Biochem. J. 24(4), 993–1011 (1930).
[Crossref]

Robles, F. E.

Ruers, T.

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

Rusch, V. W.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Saalfeld, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]

Sawyer, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Schneider, E. B.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Scholze, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

Schürmann, M.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

Scott Carney, P.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Shapiro, J.

Shi, S. R.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Shi, W.

Slipchenko, M. N.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

Soltani, S.

Spitalier, J.-M.

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Subramaniam, V.

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

Tafra, L.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Tang, L.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Taylor, C. R.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

te Velde, E. A.

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

Tomancak, P.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]

Tsuchiya, K.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Tuchin, V. V.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

Veerman, T.

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref]

Wang, L. V.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

Wang, P.

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

Wong, T. T. W.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Xia, Y.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

Yao, D.-K.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

Young, A.

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Zakowski, M. F.

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Zemp, R.

Zemp, R. J.

Zhang, C.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

Zhang, R.

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Zhang, Y. S.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

Zhu, D.

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

Zitelli, J. A.

G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
[Crossref]

Zysk, A. M.

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Am. J. Clin. Pathol. (1)

S. R. Shi, C. Liu, L. Pootrakul, L. Tang, A. Young, R. Chen, R. J. Cote, and C. R. Taylor, “Evaluation of the value of frozen tissue section used as “gold standard” for immunohistochemistry,” Am. J. Clin. Pathol. 129(3), 358–366 (2008).
[Crossref]

Ann. Surg. Oncol. (1)

A. M. Zysk, K. Chen, E. Gabrielson, L. Tafra, E. A. May Gonzalez, J. K. Canner, E. B. Schneider, A. J. Cittadine, P. Scott Carney, S. A. Boppart, K. Tsuchiya, K. Sawyer, and L. K. Jacobs, “Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study,” Ann. Surg. Oncol. 22(10), 3356–3362 (2015).
[Crossref]

Appl. Opt. (1)

Biochem. J. (1)

G. S. Adair and M. E. Robinson, “The specific refraction increments of serum-albumin and serum-globulin,” Biochem. J. 24(4), 993–1011 (1930).
[Crossref]

Bioinformatics (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004).
[Crossref]

Cancer (1)

J. M. Kurtz, R. Amalric, H. Brandone, Y. Ayme, J. Jacquemier, J.-C. Pietra, D. Hans, J.-F. Pollet, C. Bressac, and J.-M. Spitalier, “Local recurrence after breast-conserving surgery and radiotherapy. Frequency, time course, and prognosis,” Cancer 63(10), 1912–1917 (1989).
[Crossref]

Dermatol. Surg. (2)

E. B. Desciak and M. E. Maloney, “Artifacts in frozen section preparation,” Dermatol. Surg. 26(5), 500–504 (2000).
[Crossref]

G. M. Bricca, D. G. Brodland, and J. A. Zitelli, “Immunostaining Melanoma Frozen Sections: The 1-Hour Protocol,” Dermatol. Surg. 30(3), 403–408 (2004).
[Crossref]

Emerg. Infect Dis. (1)

R. L. Nichols, “Preventing surgical site infections: A surgeon’s perspective,” Emerg. Infect Dis. 7(2), 220–224 (2001).
[Crossref]

Eur. J. Surg. Oncol. (1)

E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol. 36(1), 6–15 (2010).
[Crossref]

J. Biomed. Opt. (2)

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[Crossref]

R. Li, M. N. Slipchenko, P. Wang, and J.-X. Cheng, “Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat,” J. Biomed. Opt. 18(4), 040502 (2013).
[Crossref]

J. Biophotonics (1)

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[Crossref]

J. Lipid Res. (1)

J. McHowat, J. H. Jones, and M. H. Creer, “Quantitation of individual phospholipid molecular species by UV absorption measurements,” J. Lipid Res. 37, 2450–2460 (1996).

J. Thorac. Cardiovasc. Surg. (1)

N. Martini, M. S. Bains, M. E. Burt, M. F. Zakowski, P. McCormack, V. W. Rusch, and R. J. Ginsberg, “Incidence of local recurrence and second primary tumors in resected stage I lung cancer,” J. Thorac. Cardiovasc. Surg. 109(1), 120–129 (1995).
[Crossref]

Laser Photonics Rev. (1)

D. Zhu, K. V. Larin, Q. Luo, and V. V. Tuchin, “Recent progress in tissue optical clearing,” Laser Photonics Rev. 7(5), 732–757 (2013).
[Crossref]

Light: Sci. Appl. (1)

P. Hajireza, W. Shi, K. Bell, R. J. Paproski, and R. J. Zemp, “Non-interferometric photoacoustic remote sensing microscopy,” Light: Sci. Appl. 6(6), e16278 (2017).
[Crossref]

Opt. Lett. (2)

Optica (1)

Sci. Adv. (1)

T. T. W. Wong, R. Zhang, P. Hai, C. Zhang, M. A. Pleitez, R. L. Aft, D. V. Novack, and L. V. Wang, “Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy,” Sci. Adv. 3(5), e1602168 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Simplified schematic of multi-wavelength PARS microscope. Components labels are defined as: pinhole (PH), neutral density filter (NDF), collimator (C), polarized beam splitter (PBS), quarter waveplate (QWP), dichroic mirror (DC), photodiode (PD), fiber launch (FL), galvanometer mirrors (GM), objective lens (OL), mirror (M)
Fig. 2.
Fig. 2. Resolution characterization of the multi-wavelength PARS system (a) carbon fibers imaged with the 266 nm excitation (b) corresponding edge-spread function measuring a resolution of 1.2 µm (c) carbon fibers imaged with the 532 nm excitation (d) corresponding edge spread function measuring a resolution of 1.5 µm. Scale bar 10 µm.
Fig. 3.
Fig. 3. (a) high-resolution H&E image of human epidermal tissue (b) high-resolution PARS image with a 266 nm excitation of an adjacent section. Color bar represents normalized PARS signal. Scale bar 10 µm.
Fig. 4.
Fig. 4. (a) A standard H&E stained slide of a blood vessel (blue outline) within human pancreatic tissue imaged with a conventional brightfield microscope. (b) An adjacent unstained slide of the same specimen imaged with 266 nm excitation and (c) with 532 nm excitation. (d) A superimposed image of (b) and (c) with a histology-like colormap, DNA is colored purple, hemoglobin is colored red. Scale bar 100 µm.
Fig. 5.
Fig. 5. (a) A standard H&E stained slide of venules (blue outline) embedded within a human tonsil tissue imaged with a conventional brightfield microscope. (b) An adjacent unstained slide of the same specimen imaged with 266 nm excitation and (c) with 532 nm excitation. (d) A superimposed image of (b) and (c) with a histology-like colormap, DNA is colored purple, hemoglobin is colored red. Scale bar 100 µm.