Abstract

Intravenously administered liposomes and other nano-sized particles are known to passively accumulate in solid tumors via the enhanced permeability and retention (EPR) effect, which is extensively explored toward the improvement of diagnosis and drug delivery in oncology. Agent extravasation into tumors is often hampered by the mononuclear phagocytic and renal systems, which sequester and/or eliminate most of the nanoparticles from the body. Dynamic imaging of the tumor microcirculation and bolus perfusion can thus facilitate optimization of the nanoparticle delivery. When it comes to non-invasive visualization of rapid biological dynamics in whole tumors, the currently available pre-clinical imaging modalities are commonly limited by shallow penetration, lack of suitable contrast or otherwise insufficient spatial or temporal resolution. Herein, we demonstrate the unique capabilities of a combined epi-fluorescence and optoacoustic tomography (FLOT) system for characterizing contrast agent dynamics in orthotopic breast tumors in mice. A liposomal indocyanine green (Lipo-ICG) preparation was administered intravenously with the time-lapse data continuously acquired during and after the injection procedure. In addition to the highly sensitive detection of the fluorescence agent by the epi-fluorescence modality, the volumetric multi-spectral optoacoustic tomography readings further enabled resolving deep-seated vascular structures with high spatial resolution and hence provided accurate readings of the dynamic bio-distribution of nanoparticles in the entire tumor in 3D. The synergetic combination of the two modalities can become a powerful tool in cancer research and potentially aid the diagnosis, staging and treatment guidance of certain types of cancer in the clinical setting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging

Jaidip Jagtap, Gayatri Sharma, Abdul K. Parchur, Venkateswara Gogineni, Carmen Bergom, Sarah White, Michael J. Flister, and Amit Joshi
Biomed. Opt. Express 9(2) 543-556 (2018)

In vivo spectral and fluorescence microscopy comparison of microvascular function after treatment with OXi4503, Sunitinib and their combination in Caki-2 tumors

Jennifer A. Lee, Nikolett M. Biel, Raymond T. Kozikowski, Dietmar W. Siemann, and Brian S. Sorg
Biomed. Opt. Express 5(6) 1965-1979 (2014)

Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions

Axel Hagen, Dirk Grosenick, Rainer Macdonald, Herbert Rinneberg, Susen Burock, Peter Warnick, Alexander Poellinger, and Peter M. Schlag
Opt. Express 17(19) 17016-17033 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
    [Crossref] [PubMed]
  2. J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
    [Crossref] [PubMed]
  3. R. K. Jain and T. Stylianopoulos, “Delivering nanomedicine to solid tumors,” Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
    [Crossref] [PubMed]
  4. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
    [Crossref] [PubMed]
  5. K. Greish, “Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting,” Methods Mol. Biol. 624, 25–37 (2010).
    [Crossref] [PubMed]
  6. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
    [Crossref] [PubMed]
  7. G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
    [Crossref] [PubMed]
  8. S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
    [Crossref]
  9. R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
    [Crossref] [PubMed]
  10. R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(47), 14424–14428 (2015).
    [Crossref] [PubMed]
  11. Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
    [PubMed]
  12. A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
    [Crossref] [PubMed]
  13. J. V. Frangioni, “New technologies for human cancer imaging,” J. Clin. Oncol. 26(24), 4012–4021 (2008).
    [Crossref] [PubMed]
  14. N. Ramamonjisoa and E. Ackerstaff, “Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging,” Front. Oncol. 7, 3 (2017).
    [Crossref] [PubMed]
  15. E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
    [Crossref] [PubMed]
  16. G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
    [Crossref] [PubMed]
  17. X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
    [Crossref] [PubMed]
  18. V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
    [Crossref] [PubMed]
  19. V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
    [Crossref] [PubMed]
  20. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  21. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  22. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [Crossref]
  23. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
    [Crossref]
  24. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [Crossref] [PubMed]
  25. J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
    [Crossref] [PubMed]
  26. A. Ozbek, X. L. Dean-Ben, and D. Razansky, “Optoacoustic imaging at kilohertz volumetric frame rates,” Optica 5(7), 857–863 (2018).
    [Crossref]
  27. Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents,” Biomed. Opt. Express 9(5), 2229–2239 (2018).
    [Crossref] [PubMed]
  28. Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging,” Opt. Lett. 42(22), 4577–4580 (2017).
    [Crossref] [PubMed]
  29. B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
    [Crossref] [PubMed]
  30. A. Ozbek, X. L. Dean-Ben, and D. E. N. V. Razansky, “Realtime parallel back-projection algorithm for three-dimensional optoacoustic imaging devices,” in Opto-Acoustic Methods and Applications (Optical Society of America, Munich, 2013), p. 88000I.
  31. S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
    [Crossref] [PubMed]
  32. X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
    [Crossref] [PubMed]
  33. R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
    [Crossref] [PubMed]
  34. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  35. Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
    [Crossref] [PubMed]
  36. O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
    [Crossref] [PubMed]
  37. E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
    [Crossref]
  38. X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci Rep-Uk 7, 6850 (2017).
  39. G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
    [Crossref] [PubMed]
  40. G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
    [Crossref] [PubMed]
  41. H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
    [Crossref] [PubMed]
  42. S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
    [Crossref] [PubMed]

2019 (2)

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

2018 (4)

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

A. Ozbek, X. L. Dean-Ben, and D. Razansky, “Optoacoustic imaging at kilohertz volumetric frame rates,” Optica 5(7), 857–863 (2018).
[Crossref]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents,” Biomed. Opt. Express 9(5), 2229–2239 (2018).
[Crossref] [PubMed]

2017 (6)

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging,” Opt. Lett. 42(22), 4577–4580 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

N. Ramamonjisoa and E. Ackerstaff, “Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging,” Front. Oncol. 7, 3 (2017).
[Crossref] [PubMed]

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
[Crossref]

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

2016 (5)

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

2015 (2)

X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
[Crossref] [PubMed]

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(47), 14424–14428 (2015).
[Crossref] [PubMed]

2014 (1)

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
[Crossref] [PubMed]

2011 (4)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

2010 (3)

R. K. Jain and T. Stylianopoulos, “Delivering nanomedicine to solid tumors,” Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
[Crossref] [PubMed]

K. Greish, “Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting,” Methods Mol. Biol. 624, 25–37 (2010).
[Crossref] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

2008 (3)

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

J. V. Frangioni, “New technologies for human cancer imaging,” J. Clin. Oncol. 26(24), 4012–4021 (2008).
[Crossref] [PubMed]

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

2007 (3)

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

2004 (1)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

1999 (1)

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

1986 (1)

Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Achorn, O. B.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Ackerstaff, E.

N. Ramamonjisoa and E. Ackerstaff, “Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging,” Front. Oncol. 7, 3 (2017).
[Crossref] [PubMed]

Arts, H. J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Arts, H. J. G.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Audet, J.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Barbier, E. L.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Bart, J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Bartelt, A.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Bawendi, M. G.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Bay, E.

X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
[Crossref] [PubMed]

Bayer, C.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Beard, P.

Benjamin, L.

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Benmerad, M.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Benoit, J. P.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Berezin, M.

E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
[Crossref]

Bischof, T. S.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Boucher, Y.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Bruns, O. T.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Carr, J. A.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Chan, W. C. W.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Chen, O.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Chen, Z.

Choi, H. S.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Coll, J. L.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Coropceanu, I.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Cortesi, R.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Crane, L. M.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Crane, L. M. A.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Dai, Q.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Dayton, P. A.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

de Jong, J. S.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Dean-Ben, X. L.

A. Ozbek, X. L. Dean-Ben, and D. Razansky, “Optoacoustic imaging at kilohertz volumetric frame rates,” Optica 5(7), 857–863 (2018).
[Crossref]

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

Deán-Ben, X. L.

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents,” Biomed. Opt. Express 9(5), 2229–2239 (2018).
[Crossref] [PubMed]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging,” Opt. Lett. 42(22), 4577–4580 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
[Crossref] [PubMed]

Déan-Ben, X. L.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Degtyaruk, O.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

Diot, G.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Duda, D. G.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Dufort, S.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Dvorak, A. M.

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Dvorak, H. F.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Efimov, I. R.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Ermolayev, V.

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

Esposito, E.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Estrada, H.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Farokhzad, O. C.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Frangioni, J. V.

J. V. Frangioni, “New technologies for human cancer imaging,” J. Clin. Oncol. 26(24), 4012–4021 (2008).
[Crossref] [PubMed]

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Franke, D.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Fukumura, D.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Gambarin, S.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Gambhir, S. S.

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

Gill, K. L.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

Glasl, S.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Goel, S.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Gottschalk, S.

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents,” Biomed. Opt. Express 9(5), 2229–2239 (2018).
[Crossref] [PubMed]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging,” Opt. Lett. 42(22), 4577–4580 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

Gravier, J.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Greish, K.

K. Greish, “Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting,” Methods Mol. Biol. 624, 25–37 (2010).
[Crossref] [PubMed]

Harlaar, N. J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Harris, D. K.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Heeren, J.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Henry, M.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Hettiarachchi, K.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Hirsjärvi, S.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Hong, S.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Hricak, H.

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

Huang, L.

Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
[Crossref] [PubMed]

Hutter, M. A.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

Hwang, G. W.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Itty Ipe, B.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jain, R. K.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

R. K. Jain and T. Stylianopoulos, “Delivering nanomedicine to solid tumors,” Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
[Crossref] [PubMed]

Jaworski, F. B.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Jensen, K. F.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Karageorgis, A.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Karp, J. M.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Kelder, W.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Kloepper, J.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Ku, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Langer, R.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Laufer, J.

Lee, A. P.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Liapis, E.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Lin, H. A.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Liu, W.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
[Crossref] [PubMed]

Longo, M. L.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Low, P. S.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Madden, A. J.

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

Maeda, H.

Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Mandal, S.

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

Margalit, R.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Matsumura, Y.

Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Mc Larney, B.

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

Meier, R.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Menegatti, E.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Metz, S.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Misra, P.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Montana, D. M.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Montigon, O.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Multhoff, G.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Munn, L. L.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Nagy, J. A.

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Nahrendorf, M.

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(47), 14424–14428 (2015).
[Crossref] [PubMed]

Nastruzzi, C.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Noske, A.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Ntziachristos, V.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

Nunes, A.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

O’Neal, D. P.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

Ohta, S.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Olefir, I.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Ovsepian, S. V.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Ozbek, A.

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Passirani, C.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Peer, D.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Petschauer, J. S.

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

Pleijhuis, R. G.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Powell, R. L.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Ramamonjisoa, N.

N. Ramamonjisoa and E. Ackerstaff, “Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging,” Front. Oncol. 7, 3 (2017).
[Crossref] [PubMed]

Razansky, D.

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

A. Ozbek, X. L. Dean-Ben, and D. Razansky, “Optoacoustic imaging at kilohertz volumetric frame rates,” Optica 5(7), 857–863 (2018).
[Crossref]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents,” Biomed. Opt. Express 9(5), 2229–2239 (2018).
[Crossref] [PubMed]

Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Hybrid system for in vivo epifluorescence and 4D optoacoustic imaging,” Opt. Lett. 42(22), 4577–4580 (2017).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
[Crossref] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

Rebling, J.

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Reiss, M.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Riedemann, L.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Rowlands, C. J.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Rummeny, E.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Sadtler, B.

E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
[Crossref]

Sancey, L.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Sarantopoulos, A.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Schöttle, V.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Schroeder, B.

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Schwaiger, M. C.

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

Sela, G.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Shi, Y.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Shoham, S.

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

Siroux, V.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

So, P. T. C.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Song, G.

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

Stangl, S.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Stoica, G.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Stylianopoulos, T.

R. K. Jain and T. Stylianopoulos, “Delivering nanomedicine to solid tumors,” Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
[Crossref] [PubMed]

Symvoulidis, P.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Talu, E.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Tanaka, E.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Tavares, A. J.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Telloli, P.

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Texier, I.

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

Themelis, G.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Thimsen, E.

E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
[Crossref]

Tseng, Y. C.

Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
[Crossref] [PubMed]

Tzoumas, S.

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

van Dam, G. M.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

van der Zee, A. G.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

van der Zee, A. G. J.

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Wahl-Schott, C. A.

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

Wei, H.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(47), 14424–14428 (2015).
[Crossref] [PubMed]

Wilhelm, S.

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Wilson, M. W. B.

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

Wissmeyer, G.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Xie, X.

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xu, L.

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Zamboni, W. C.

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

Zeng, H.

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Zhang, E.

Zhao, S.

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Zimmer, J. P.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Zwack, M.

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

Angiogenesis (1)

J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis 11(2), 109–119 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Cancer Res. (1)

Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
[PubMed]

Chem. Rev. (1)

V. Ntziachristos and D. Razansky, “Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT),” Chem. Rev. 110(5), 2783–2794 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

G. Diot, S. Metz, A. Noske, E. Liapis, B. Schroeder, S. V. Ovsepian, R. Meier, E. Rummeny, and V. Ntziachristos, “Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer,” Clin. Cancer Res. 23(22), 6912–6922 (2017).
[Crossref] [PubMed]

Curr. Rheumatol. Rev. (1)

G. Song, J. S. Petschauer, A. J. Madden, and W. C. Zamboni, “Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases,” Curr. Rheumatol. Rev. 10(1), 22–34 (2014).
[Crossref] [PubMed]

Eur. Radiol. (1)

V. Ermolayev, X. L. Dean-Ben, S. Mandal, V. Ntziachristos, and D. Razansky, “Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography,” Eur. Radiol. 26(6), 1843–1851 (2016).
[Crossref] [PubMed]

Front. Oncol. (1)

N. Ramamonjisoa and E. Ackerstaff, “Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging,” Front. Oncol. 7, 3 (2017).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Biophotonics (2)

J. Rebling, H. Estrada, S. Gottschalk, G. Sela, M. Zwack, G. Wissmeyer, V. Ntziachristos, and D. Razansky, “Dual-wavelength hybrid optoacoustic-ultrasound biomicroscopy for functional imaging of large-scale cerebral vascular networks,” J. Biophotonics 11(9), e201800057 (2018).
[Crossref] [PubMed]

B. Mc Larney, J. Rebling, Z. Chen, X. L. Deán-Ben, S. Gottschalk, and D. Razansky, “Uniform light delivery in volumetric optoacoustic tomography,” J. Biophotonics 12(6), e201800387 (2019).
[Crossref] [PubMed]

J. Clin. Oncol. (1)

J. V. Frangioni, “New technologies for human cancer imaging,” J. Clin. Oncol. 26(24), 4012–4021 (2008).
[Crossref] [PubMed]

J. Microencapsul. (1)

R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, “Preparation of liposomes by reverse-phase evaporation using alternative organic solvents,” J. Microencapsul. 16(2), 251–256 (1999).
[Crossref] [PubMed]

Methods Mol. Biol. (1)

K. Greish, “Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting,” Methods Mol. Biol. 624, 25–37 (2010).
[Crossref] [PubMed]

Mol. Imaging (1)

E. Talu, K. Hettiarachchi, S. Zhao, R. L. Powell, A. P. Lee, M. L. Longo, and P. A. Dayton, “Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging,” Mol. Imaging 6(6), 384–392 (2007).
[Crossref] [PubMed]

Nano Lett. (1)

Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain,” Nano Lett. 4(9), 1689–1692 (2004).
[Crossref]

Nanophotonics-Berlin (1)

E. Thimsen, B. Sadtler, and M. Berezin, “Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities,” Nanophotonics-Berlin 6(5), 1043–1054 (2017).
[Crossref]

Nat. Biomed. Eng. (2)

O. T. Bruns, T. S. Bischof, D. K. Harris, D. Franke, Y. Shi, L. Riedemann, A. Bartelt, F. B. Jaworski, J. A. Carr, C. J. Rowlands, M. W. B. Wilson, O. Chen, H. Wei, G. W. Hwang, D. M. Montana, I. Coropceanu, O. B. Achorn, J. Kloepper, J. Heeren, P. T. C. So, D. Fukumura, K. F. Jensen, R. K. Jain, and M. G. Bawendi, “Next-generation in vivo optical imaging with short-wave infrared quantum dots,” Nat. Biomed. Eng. 1(4), 56 (2017).
[Crossref] [PubMed]

S. Gottschalk, O. Degtyaruk, B. Mc Larney, J. Rebling, M. A. Hutter, X. L. Deán-Ben, S. Shoham, and D. Razansky, “Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain,” Nat. Biomed. Eng. 3(5), 392–401 (2019).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Tzoumas, A. Nunes, I. Olefir, S. Stangl, P. Symvoulidis, S. Glasl, C. Bayer, G. Multhoff, and V. Ntziachristos, “Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues,” Nat. Commun. 7(1), 12121 (2016).
[Crossref] [PubMed]

Nat. Med. (2)

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751–760 (2007).
[Crossref] [PubMed]

Nat. Rev. Clin. Oncol. (1)

R. K. Jain and T. Stylianopoulos, “Delivering nanomedicine to solid tumors,” Nat. Rev. Clin. Oncol. 7(11), 653–664 (2010).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan, “Analysis of nanoparticle delivery to tumours,” Nat. Rev. Mater. 1(5), 16014 (2016).
[Crossref]

Opt. Lett. (1)

Optica (1)

Pharm. Res. (1)

Y. Liu, Y. C. Tseng, and L. Huang, “Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method?” Pharm. Res. 29(12), 3273–3277 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Physiol. Rev. (1)

S. Goel, D. G. Duda, L. Xu, L. L. Munn, Y. Boucher, D. Fukumura, and R. K. Jain, “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol. Rev. 91(3), 1071–1121 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Weissleder and M. Nahrendorf, “Advancing biomedical imaging,” Proc. Natl. Acad. Sci. U.S.A. 112(47), 14424–14428 (2015).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[Crossref]

Sci. Rep. (3)

X. L. Deán-Ben, E. Bay, and D. Razansky, “Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data,” Sci. Rep. 4(1), 5878 (2015).
[Crossref] [PubMed]

A. Karageorgis, S. Dufort, L. Sancey, M. Henry, S. Hirsjärvi, C. Passirani, J. P. Benoit, J. Gravier, I. Texier, O. Montigon, M. Benmerad, V. Siroux, E. L. Barbier, and J. L. Coll, “An MRI-based classification scheme to predict passive access of 5 to 50-nm large nanoparticles to tumors,” Sci. Rep. 6(1), 21417 (2016).
[Crossref] [PubMed]

H. A. Lin, X. L. Déan-Ben, M. Reiss, V. Schöttle, C. A. Wahl-Schott, I. R. Efimov, and D. Razansky, “Ultrafast Volumetric Optoacoustic Imaging of Whole Isolated Beating Mouse Heart,” Sci. Rep. 8(1), 14132 (2018).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

R. Weissleder, M. C. Schwaiger, S. S. Gambhir, and H. Hricak, “Imaging approaches to optimize molecular therapies,” Sci. Transl. Med. 8(355), 355ps16 (2016).
[Crossref] [PubMed]

Other (2)

A. Ozbek, X. L. Dean-Ben, and D. E. N. V. Razansky, “Realtime parallel back-projection algorithm for three-dimensional optoacoustic imaging devices,” in Opto-Acoustic Methods and Applications (Optical Society of America, Munich, 2013), p. 88000I.

X. L. Deán-Ben, H. López-Schier, and D. Razansky, “Optoacoustic micro-tomography at 100 volumes per second,” Sci Rep-Uk 7, 6850 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental set-up and Lipo-ICG characterization. (a) Schematic of the FLOT system. (b) Photograph of the mouse carrying the MDA-MB-231 breast tumor. (c) Electron microscope image of the Lipo-ICG contrast agent. (d) Spectrophotometer- and OA-based measurements of the absorption spectrum of Lipo-ICG with a concentration of 50 µg/ml.
Fig. 2
Fig. 2 Time lapse images of mouse breast tumor perfusion. (a) Maximum intensity projection of the tumor at different time points in x-y and y-z view. In the x-y view, fluorescence signal is superimposed onto the OA signal. The dotted circle indicates the effective fluorescence FOV with a diameter of ~8 mm. (b) – (d) Signal profiles from the three points p1-p3 indicated in panel (a). Note that in contrast to the surface-weighted fluorescence measurements, OA imaging can resolve 3D information, thus the OA signal traces are also plotted at different depths: depth-1 is located in the most superficial area while depth-4 corresponds to the deepest region in the tumor. Scale bar 1 mm.
Fig. 3
Fig. 3 Sensitivity comparison of OA and FL for Lipo-ICG detection. (a) MIPs of the OA images along the z and x directions for 3 different time points. (b) FL images for the same time points in (a). (c) – (e) Signal profiles from points p1-p3 indicated in panel (a), respectively. Scale bar 1 mm.
Fig. 4
Fig. 4 Multi-spectral optoacoustic imaging of tumors 30 min post injection of the liposomal ICG agent. Maximum intensity projections (MIPs) along the depth and lateral dimensions of the unmixed distribution of oxygenated hemoglobin (a), deoxygenated hemoglobin (b), oxygen saturation (c) and liposomal ICG (d). sO2 values below 30% were set to zero. (e) Fluorescence image of the tumor with the region of interest indicated by the dotted cycle in (d).

Metrics