Abstract

The fundamental principle of liquid-crystal (LC)-based biosensing is the sensitive response of LC orientation to external stimuli. Biomolecules such as proteins or DNAs immobilized on the glass substrate of a LC cell are detected through disrupting the LC alignment and, in turn, altering the birefringence, resulting in changes in the optical texture that can be readily observed under a polarizing optical microscope. With an additional weak electric field across a sandwiched LC cell, we demonstrate in this study a novel label-free biodetection technique with amplified signal and improved detection limit. By applying the binarization analysis as the quantitative approach, the increase in the light leakage area in the optical texture of LCs with increasing amount of biomolecules can be quantitated with a bright-area-ratio (BAR)-versus-concentration curve. The reported biosensing technique exploits both the optical and electrical properties of LCs and is potentially applicable to other LC-based rapid screening and bioassays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free protein sensing by employing blue phase liquid crystal

Mon-Juan Lee, Chung-Huan Chang, and Wei Lee
Biomed. Opt. Express 8(3) 1712-1720 (2017)

Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate

Fu-Lun Chen, Yu-Jui Fan, Jia-De Lin, and Yu-Cheng Hsiao
Biomed. Opt. Express 10(9) 4636-4642 (2019)

Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal

Yu-Cheng Hsiao, Yu-Chien Sung, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 6(12) 5033-5038 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
    [Crossref]
  2. M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
    [Crossref]
  3. P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
    [Crossref]
  4. Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
    [Crossref]
  5. C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
    [Crossref]
  6. M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
    [Crossref]
  7. M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
    [Crossref]
  8. H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
    [Crossref]
  9. C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
    [Crossref]
  10. C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
    [Crossref]
  11. M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
    [Crossref]
  12. R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
    [Crossref]
  13. D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
    [Crossref]
  14. H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
    [Crossref]
  15. H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
    [Crossref]
  16. H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
    [Crossref]
  17. S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
    [Crossref]
  18. C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
    [Crossref]
  19. M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
    [Crossref]
  20. F. Li and R. Lakerveld, “Electric-field-assisted protein crystallization in continuous flow,” Cryst. Growth Des. 18(5), 2964–2971 (2018).
    [Crossref]
  21. S.-H. Chen, W. Lee, and K.-F. Huang, “Observation of domain patterns induced by ultrasound pulses in a nematic liquid-crystal film,” Opt. Lett. 14(19), 1042–1044 (1989).
    [Crossref]

2019 (2)

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

2018 (4)

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
[Crossref]

F. Li and R. Lakerveld, “Electric-field-assisted protein crystallization in continuous flow,” Cryst. Growth Des. 18(5), 2964–2971 (2018).
[Crossref]

2017 (2)

M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
[Crossref]

2016 (1)

C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

2015 (6)

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

2014 (2)

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

2012 (1)

C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref]

2010 (1)

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

2004 (1)

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

1989 (1)

Abbott, N. L.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

Akamatsu, M.

M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
[Crossref]

Apik, A. I.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Armas-Perez, J. C.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Chang, C.-H.

Chen, C.-H.

C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref]

Chen, C.-Y.

Chen, S.-H.

Chiang, Y.-L.

Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
[Crossref]

De, J.

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

de-Pablo, J. J.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Gau, X.-Y.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Guo, L.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Hernandez-Ortiz, J. P.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Hsiao, Y.-C.

Hsu, Y. C.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Huang, K.-F.

Jain, V.

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

Karn, A.

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

Lakerveld, R.

F. Li and R. Lakerveld, “Electric-field-assisted protein crystallization in continuous flow,” Cryst. Growth Des. 18(5), 2964–2971 (2018).
[Crossref]

Lee, M.-J.

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
[Crossref]

M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
[Crossref]

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Lee, W.

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
[Crossref]

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

M.-J. Lee, C.-H. Chang, and W. Lee, “Label-free protein sensing by employing blue phase liquid crystal,” Biomed. Opt. Express 8(3), 1712–1720 (2017).
[Crossref]

C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
[Crossref]

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

Y.-C. Hsiao, Y.-C. Sung, M.-J. Lee, and W. Lee, “Highly sensitive color-indicating and quantitative biosensor based on cholesteric liquid crystal,” Biomed. Opt. Express 6(12), 5033–5038 (2015).
[Crossref]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

S.-H. Chen, W. Lee, and K.-F. Huang, “Observation of domain patterns induced by ultrasound pulses in a nematic liquid-crystal film,” Opt. Lett. 14(19), 1042–1044 (1989).
[Crossref]

Lee, Y.-H.

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Li, F.

F. Li and R. Lakerveld, “Electric-field-assisted protein crystallization in continuous flow,” Cryst. Growth Des. 18(5), 2964–2971 (2018).
[Crossref]

Li, M.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Li, X.

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

Liao, S.

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

Lin, C.-H.

C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
[Crossref]

Lin, C.-M.

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

Liu, Z.-Y.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Loitongbam, L.

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

Ma, H.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Martinez-Gonzalez, J.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Matile, S.

M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
[Crossref]

Nandi, R.

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

Pal, S. K.

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

Peng, Y.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Sadati, M.

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Sakai, N.

M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
[Crossref]

Shen, G.

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Snodgrass, E. J.

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

Song, X.

Su, H.-W.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

Sun, S.-H.

Sung, Y.-C.

Tan, H.

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Tingey, M. L.

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

Wang, Q.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Wang, Z.-K.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Wilyana, S.

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

Wu, P.-C.

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

Wu, Z.

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Xu, L.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Yang, J.-E.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Yang, K.-L.

C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref]

Yang, S.

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Yang, Y.-G.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Yu, R.

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Zhang, C.-C.

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Zhao, D.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Zhou, W.

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D. Zhao, Y. Peng, L. Xu, W. Zhou, Q. Wang, and L. Guo, “Liquid-crystal biosensor based on nickel-nanosphere-induced homeotropic alignment for the amplified detection of thrombin,” ACS Appl. Mater. Interfaces 7(42), 23418–23422 (2015).
[Crossref]

Adv. Funct. Mater. (1)

M. Sadati, A. I. Apik, J. C. Armas-Perez, J. Martinez-Gonzalez, J. P. Hernandez-Ortiz, N. L. Abbott, and J. J. de-Pablo, “Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers,” Adv. Funct. Mater. 25(38), 6050–6060 (2015).
[Crossref]

Anal. Biochem. (1)

C.-H. Chen and K.-L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref]

Analyst (1)

R. Nandi, L. Loitongbam, J. De, V. Jain, and S. K. Pal, “Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine,” Analyst 144(4), 1110–1114 (2019).
[Crossref]

Angew. Chem., Int. Ed. (1)

H. Tan, S. Yang, G. Shen, R. Yu, and Z. Wu, “Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition,” Angew. Chem., Int. Ed. 49(46), 8608–8611 (2010).
[Crossref]

Appl. Phys. Lett. (1)

C.-H. Lin, M.-J. Lee, and W. Lee, “Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals,” Appl. Phys. Lett. 109(9), 093703 (2016).
[Crossref]

Biomed. Opt. Express (3)

Biosens. Bioelectron. (1)

H. Tan, X. Li, S. Liao, R. Yu, and Z. Wu, “Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation,” Biosens. Bioelectron. 62, 84–89 (2014).
[Crossref]

Cryst. Growth Des. (1)

F. Li and R. Lakerveld, “Electric-field-assisted protein crystallization in continuous flow,” Cryst. Growth Des. 18(5), 2964–2971 (2018).
[Crossref]

Dyes Pigm. (2)

P.-C. Wu, A. Karn, M.-J. Lee, W. Lee, and C.-Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigm. 150, 73–78 (2018).
[Crossref]

Y.-L. Chiang, M.-J. Lee, and W. Lee, “Enhancing detection sensitivity in quantitative protein detection based on dye-doped liquid crystals,” Dyes Pigm. 157, 117–122 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

M. Akamatsu, N. Sakai, and S. Matile, “Electric-field-assisted anion−π catalysis,” J. Am. Chem. Soc. 139(19), 6558–6561 (2017).
[Crossref]

J. Biomed. Opt. (2)

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y. C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref]

J. Mater. Chem. A (1)

C.-C. Zhang, Z.-K. Wang, M. Li, Z.-Y. Liu, J.-E. Yang, Y.-G. Yang, X.-Y. Gau, and H. Ma, “Electric-field assisted perovskite crystallization for high-performance solar cells,” J. Mater. Chem. A 6(3), 1161–1170 (2018).
[Crossref]

Langmuir (1)

M. L. Tingey, S. Wilyana, E. J. Snodgrass, and N. L. Abbott, “Imaging of affinity microcontact printed proteins by using liquid crystals,” Langmuir 20(16), 6818–6826 (2004).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

M.-J. Lee, C.-H. Lin, and W. Lee, “Liquid-crystal-based biosensing beyond texture observations,” Proc. SPIE 9565, 956510 (2015).
[Crossref]

Sens. Actuators, B (1)

C.-M. Lin, P.-C. Wu, M.-J. Lee, and W. Lee, “Label-free protein quantitation by dielectric spectroscopy of dual-frequency liquid crystal,” Sens. Actuators, B 282, 158–163 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Illustration of the disturbance in the homeotropic alignment of LC caused by the presence of biomolecules at the LC‒glass interface. The sample cell consists of two identical glass substrates covered with ITO and DMOAP layers.
Fig. 2.
Fig. 2. Optical textures of MLC-6884 at various BSA concentrations ranging from 1 pg/ml to 10 μg/ml in the presence or absence of an externally applied electric field of 1.7 Vrms at a frequency of 1 kHz. The dashed circle represents the initial area of distribution of 3 µl of BSA solution at the designated concentration during the immobilization procedure. Scale bar: 400 μm.
Fig. 3.
Fig. 3. Voltage-dependent responses of MLC-6884 at various1-kHz voltages. Insets: Voltage–transmittance measurement and the corresponding optical texture of MLC-6884. (a) The overall transmission spectrum from 0 to 3.0 Vrms. Representative optical textures observed at (b) 0, (c) 1.7, and (d) 1.9 Vrms during the electro-optical measurement to demonstrate the effect of the externally applied electric field at Fréedericksz’s transition. Scale bar: 400 μm.
Fig. 4.
Fig. 4. Quantitative analysis of the optical texture of MLC-6884 obtained in the transmission mode of the POM in the electric-field-assisted protein assay through binarization analysis. Bright area ratio (BAR) calculated from the results of binarization analysis is plotted against BSA concentration with the externally applied voltages at 0, 1.7, 1.9 and 2.0 Vrms. Error bars represent the standard deviation calculated from the BAR value of at least three independent experiments. Cell gap: 4.7 ± 0.5 μm. Insets: Binarization analysis results of 10−12 g/ml BSA (a) without externally applied electric field and (b) with an assisting electric field corresponding to 1.7 Vrms.
Fig. 5.
Fig. 5. Quantitative analysis of the optical texture of MLC-6884 obtained in the reflection mode of the POM in the field-assisted protein assay through binarization analysis. BAR calculated from the results of binarization analysis is plotted against BSA concentration with various applied voltages at 1 kHz. Error bars represent the standard deviation calculated from the BAR value of at least three independent experiments. Cell gap: 4.7 ± 0.5 μm.
Fig. 6.
Fig. 6. Comparison of the linear regression curves constructed from binary analysis of optical textures obtained in the transmission and reflection modes of the POM at BSA concentrations ranging from 10−6 to 10−12 g/ml at 1.9 Vrms. Error bars represent the standard deviation calculated from the BAR value of at least three independent experiments. Cell gap: 4.7 ± 0.5 μm.
Fig. 7.
Fig. 7. Optical textures of MLC-6884 at various capture ssDNA concentrations ranging from 1 nM to 10 μM. The capture DNA was immobilized on the DMOAP-coated glass substrate at 3 μl per dot at the designated concentration. Scale bar: 400 μm.
Fig. 8.
Fig. 8. Optical textures of MLC-6884 in the label-free DNA hybridization assay without and with electric-field assistance. The DNA hybridization assay was performed by immobilizing 10−9 M capture ssDNA at 3 µl per dot on the DMOAP-coated glass substrate, followed by reacting the entire glass surface with 10-nM, 0.1-μM, 1-μM and 10-μM complementary DNA. The dashed circumference represents the initial boundary of distributed area of 3 μl of the capture ssDNA solution during the immobilization procedure. Scale bar: 400 μm.
Fig. 9.
Fig. 9. Quantitative analysis of the optical texture of MLC-6884 obtained in the transmission mode of the POM in the field-assisted DNA hybridization assay through binarization analysis. BAR calculated from the results of binarization analysis is plotted against complementary DNA concentration with various assisting voltages at 0, 1.7, 1.9 and 2.0 Vrms. Error bars represent the standard deviation calculated from the BAR value of at least three independent experiments. Cell gap: 4.7 ± 0.5 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E th = π K 33 ε 0 | Δ ε | ,