Abstract

Cerebral ischemia is associated with a lack of oxygen and high-energy phosphates within the brain tissue, leading to irreversible cell injury. Visualizing these cellular injuries has long been a focus of experimental stroke research with application of immunohistochemistry as one of the standard approaches. It is, however, a destructive imaging technique with non-isotropic resolution, as only the two-dimensional tissue structure of a thin brain section is visualized using optical microscopy and specific stainings. Herein, we extend the structural analysis of mouse brain tissue after cerebral ischemia to the third dimension via microfocus computed tomography (µ-CT). Contrast of the weakly absorbing unstained brain tissue is enhanced by phase contrast. We show that recordings at two different magnifications and fields of view can be combined as a single approach for visualization of the associated structural alterations at isotropic resolution, from the level of the whole organ down to single cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatial and temporal identification of cerebral infarctions based on multiphoton microscopic imaging

Shu Wang, Huiping Du, Bingbing Lin, Chenxi Liao, Xiaoqin Zhu, Xingfu Wang, Hong Chen, Shuangmu Zhuo, Liwei Jiang, Lianhuang Li, Haohua Tu, and Jianxin Chen
Biomed. Opt. Express 9(5) 2312-2325 (2018)

High-speed widefield photoacoustic microscopy of small-animal hemodynamics

Bangxin Lan, Wei Liu, Ya-chao Wang, Junhui Shi, Yang Li, Song Xu, Huaxin Sheng, Qifa Zhou, Jun Zou, Ulrike Hoffmann, Wei Yang, and Junjie Yao
Biomed. Opt. Express 9(10) 4689-4701 (2018)

Diffuse optical monitoring of repeated cerebral ischemia in mice

Yu Shang, Lei Chen, Michal Toborek, and Guoqiang Yu
Opt. Express 19(21) 20301-20315 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Organization, “Top 10 causes of death,” http://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/ (2018). [Online; accessed 04-July-2018].
  2. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
    [Crossref] [PubMed]
  3. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, C. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
    [Crossref] [PubMed]
  4. G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
    [Crossref] [PubMed]
  5. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
    [Crossref]
  6. S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
    [Crossref]
  7. M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
    [Crossref] [PubMed]
  8. P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
    [Crossref] [PubMed]
  9. C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
    [Crossref] [PubMed]
  10. D. Paganin and K. A. Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
    [Crossref]
  11. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
    [Crossref]
  12. M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
    [Crossref] [PubMed]
  13. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
    [Crossref] [PubMed]
  14. M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
    [Crossref]
  15. I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
    [Crossref]
  16. D. Paganin, Coherent X-Ray Optics, Oxford Series on Synchrotron Radiation (OUP Oxford, 2013).
  17. M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
    [Crossref]
  18. M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
    [Crossref]
  19. M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
    [Crossref] [PubMed]
  20. E. Gureyev, T. Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008).
    [Crossref] [PubMed]
  21. T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
    [Crossref]
  22. M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
    [Crossref] [PubMed]
  23. Y. De Witte, M. Boone, J. Vlassenbroeck, M. Dierick, and L. Van Hoorebeke, “Bronnikov-aided correction for x-ray computed tomography,” J. Opt. Soc. Am. A 26, 890–894 (2009).
    [Crossref]
  24. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolution phase contrast tomography,” Opt. Express 14, 8103–8110 (2006).
    [Crossref] [PubMed]
  25. B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with combined wavelet-fourier filtering,” Opt. Express 17, 8567–8591 (2009).
    [Crossref]
  26. W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
    [Crossref] [PubMed]
  27. W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
    [Crossref] [PubMed]
  28. W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
    [Crossref] [PubMed]
  29. M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).
  30. J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
    [Crossref] [PubMed]
  31. J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
    [Crossref]

2018 (2)

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

2017 (2)

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

2016 (3)

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

2015 (4)

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

2014 (2)

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

2013 (2)

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

2012 (3)

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
[Crossref]

S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
[Crossref]

2011 (2)

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
[Crossref] [PubMed]

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
[Crossref] [PubMed]

2010 (1)

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

2006 (1)

2005 (1)

1999 (1)

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

1998 (1)

D. Paganin and K. A. Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

1996 (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Abela, R.

Achterhold, K.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Altantzis, T.

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

Alves, F.

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

Bähr, M.

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

Bals, S.

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

Bartels, M.

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

Baruchel, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Batenburg, K. J.

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
[Crossref] [PubMed]

Beckmann, F.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Beenhouwer, J. De

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

Berujon, S.

S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
[Crossref]

Bleichrodt, F.

Boone, M.

Burvall, A.

Cant, J.

Cloetens, C.

Cloetens, P.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Dabravolski, A.

David, C.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, C. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Diaz, A.

Diemoz, P. C.

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

Dierick, M.

Dierolf, M.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Doeppner, T. R.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

Dominietto, M.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

Dullin, C.

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

Endrizzi, M.

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

Etemire, E.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Fischer, T.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Gleich, B.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Goldschmidt, J.

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

Gradl, R.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Groso, A.

Guigay, J. P.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Gunzer, M.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

Gureyev, E.

Haber, J.

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

Hagen, C. K.

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

Hermann, D. M.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

Hernandez, V. H.

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

Hertz, H. M.

Herz, J.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Hessler, R.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Hirano, K.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Hütten, H.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Ignatyev, K.

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

Itai, Y.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Janssens, E.

Kaltwasser, B.

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

Keppeler, D.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Klingberg, A.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Koch, F. J.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

König, R.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Krenkel, M.

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

Lane, T. E.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

Lang, S.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

Langer, M.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

Larsson, D. H.

Last, A.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Ludwig, W.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Lundström, U.

Männ, L.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Marone, F.

Meyer, A.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Miller, P. R.

Momose, A.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Morgan, K. S.

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
[Crossref]

Moser, T.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

Müller, B.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Münch, B.

Munro, P. R. T.

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

Nesterets, T. Y. I.

Neumann, J.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Nugent, K. A.

D. Paganin and K. A. Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

Oelschlegel, A. M.

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

Olivo, A.

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

Paganin, D.

D. Paganin and K. A. Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

D. Paganin, Coherent X-Ray Optics, Oxford Series on Synchrotron Radiation (OUP Oxford, 2013).

Paganin, D. M.

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
[Crossref]

Palenstijn, W. J.

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
[Crossref] [PubMed]

Pfeiffer, F.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, C. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Pogany, A.

Quade, F.

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

Rack, A.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

Rau, C.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Reznikova, E.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Riek-Burchardt, M.

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

Romell, J.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Rutishauser, S.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Sabellek, P.

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

Sala, S.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Salditt, T.

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

Sawhney, K.

S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
[Crossref]

Schlenker, M.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Schulz, G.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Sijbers, J.

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
[Crossref] [PubMed]

Siu, K. K. W.

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
[Crossref]

Speller, R. D.

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

Stadelmann, C.

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

Stampanoni, M.

Stevenson, A. W.

Stöber, F.

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

Takeda, T.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Takman, P. A. C.

Thibault, P.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Töpperwien, M.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

Trtik, P.

van Aarle, W.

W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast and flexible x-ray tomography using the astra toolbox,” Opt. Express 24, 25129–25147 (2016).
[Crossref] [PubMed]

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

van der Meer, F.

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

Van Dyck, D.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Van Hoorebeke, L.

Van Landuyt, J.

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

Vassholz, M.

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Vincenz, D.

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

Vlassenbroeck, J.

Wang, H.

S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
[Crossref]

Weitkamp, T.

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, C. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Wilke, R. N.

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

Wilkins, S. W.

Witte, Y. De

Zanette, I.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Zdora, M.-C.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Zhou, T.

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

Ziegler, E.

Acta neuropathologica (1)

J. Neumann, M. Riek-Burchardt, J. Herz, T. R. Doeppner, R. König, H. Hütten, E. Etemire, L. Männ, A. Klingberg, T. Fischer, and et al., “Very-late-antigen-4 (vla-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke,” Acta neuropathologica 129, 259–277 (2015).
[Crossref]

AIP Adv. (1)

M. Krenkel, M. Töpperwien, C. Dullin, F. Alves, and T. Salditt, “Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources,” AIP Adv. 6, 035007 (2016).
[Crossref]

Appl. Phys. Lett. (4)

M. Bartels, V. H. Hernandez, M. Krenkel, T. Moser, and T. Salditt, “Phase contrast tomography of the mouse cochlea at microfocus x-ray sources,” Appl. Phys. Lett. 103, 083703 (2013).
[Crossref]

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).
[Crossref]

P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999).
[Crossref]

I. Zanette, S. Lang, A. Rack, M. Dominietto, M. Langer, F. Pfeiffer, T. Weitkamp, and B. Müller, “Holotomography versus x-ray grating interferometry: A comparative study,” Appl. Phys. Lett. 103, 244105 (2013).
[Crossref]

Front. cellular neuroscience (1)

T. R. Doeppner, B. Kaltwasser, M. Bähr, and D. M. Hermann, “Effects of neural progenitor cells on post-stroke neurological impairment-a detailed and comprehensive analysis of behavioral tests,” Front. cellular neuroscience 8, 338 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. R. Soc. Interface (1)

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

J. Struct. Biol. (1)

W. J. Palenstijn, K. J. Batenburg, and J. Sijbers, “Performance improvements for iterative electron tomography reconstruction using graphics processing units (gpus),” J. Struct. Biol. 176, 250–253 (2011).
[Crossref] [PubMed]

Med. Phys. (1)

C. K. Hagen, P. R. T. Munro, M. Endrizzi, P. C. Diemoz, and A. Olivo, “Low-dose phase contrast tomography with conventional x-ray sources,” Med. Phys. 41, 070701 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. A (1)

S. Berujon, H. Wang, and K. Sawhney, “X-ray multimodal imaging using a random-phase object,” Phys. Rev. A 86, 063813 (2012).
[Crossref]

Phys. Rev. Lett. (3)

M.-C. Zdora, P. Thibault, T. Zhou, F. J. Koch, J. Romell, S. Sala, A. Last, C. Rau, and I. Zanette, “X-ray phase-contrast imaging and metrology through unified modulated pattern analysis,” Phys. Rev. Lett. 118, 203903 (2017).
[Crossref] [PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80, 2586–2589 (1998).
[Crossref]

M. Bartels, M. Krenkel, J. Haber, R. N. Wilke, and T. Salditt, “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).
[Crossref] [PubMed]

PNAS (1)

P. R. T. Munro, K. Ignatyev, R. D. Speller, and A. Olivo, “Phase and absorption retrieval using incoherent x-ray sources,” PNAS 109, 13922–13927 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

M. Töpperwien, F. van der Meer, C. Stadelmann, and T. Salditt, “Three-dimensional virtual histology of human cerebellum by x-ray phase-contrast tomography,” Proc. Natl. Acad. Sci. 105, 6940 (2018).

Proc. SPIE (1)

M. Töpperwien, M. Krenkel, F. Quade, and T. Salditt, “Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology,” Proc. SPIE 9964, 99640I (2016).
[Crossref]

Sci. Rep. (2)

M. Töpperwien, M. Krenkel, D. Vincenz, F. Stöber, A. M. Oelschlegel, J. Goldschmidt, and T. Salditt, “Three-dimensional mouse brain cytoarchitecture revealed by laboratory-based x-ray phase-contrast tomography,” Sci. Rep. 7, 42847 (2017).
[Crossref] [PubMed]

M. Töpperwien, R. Gradl, D. Keppeler, M. Vassholz, A. Meyer, R. Hessler, K. Achterhold, B. Gleich, M. Dierolf, F. Pfeiffer, T. Moser, and T. Salditt, “Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source,” Sci. Rep. 8, 4922 (2018).
[Crossref] [PubMed]

Stroke (1)

J. Herz, P. Sabellek, T. E. Lane, M. Gunzer, D. M. Hermann, and T. R. Doeppner, “Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice,” Stroke 46, 2916–2925 (2015).
[Crossref] [PubMed]

Ultramicroscopy (1)

W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for advanced algorithm development in electron tomography,” Ultramicroscopy 157, 35–47 (2015).
[Crossref] [PubMed]

Other (2)

D. Paganin, Coherent X-Ray Optics, Oxford Series on Synchrotron Radiation (OUP Oxford, 2013).

W. H. Organization, “Top 10 causes of death,” http://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/ (2018). [Online; accessed 04-July-2018].

Supplementary Material (1)

NameDescription
» Visualization 1       In the movie, a volume rendering of the entire intact mouse brain is shown as well as virtual slices through the reconstructed density. Additionally, the results of the high-resolution scans obtained for a 1mm biopsy punch from the left andright hemi

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Overview of the experimental setup. (a) The x-rays are generated by a liquid-metal jet source with Galinstan as anode material. At a distance z01 behind the source, the sample is positioned on a fully motorized sample stage and the intensity distributions are recorded downstream by a detector, located at z12 behind the sample. Depending on the desired resolution and field of view, the setup can be either operated in a cone-beam (z01z12) or inverse geometry (z01z12). (b) The entire mouse brain, in which a stroke was induced in the left hemisphere, was embedded in paraffin and a 1 mm biopsy punch was taken both from the affected area as well as the corresponding counterpart from the right hemisphere. For the mounting in the experimental setup, the punches were squeezed into a 1 mm Kapton tube which was glued to a sample holder.
Fig. 2
Fig. 2 Overview scan of the paraffin-embedded mouse brain with an ischemic stroke induced in the left hemisphere, both before and after taking a 1 mm punch from each of the hemispheres. (a) Volume rendering of the intact brain. A slight swelling of the left hemisphere can be recognized in the 3D visualization (see Visualization 1). Three planes mark the positions of the coronal slice depicted in (b) and sagittal slices in (c), lying symmetrically around the center line of the brain. (b) Coronal slice through the brain, showing both the left and the right hemisphere. In the left hemisphere, the affected area (marked as red) exhibits slightly lower electron density. (c) Sagittal slices through the brain from both the right and left hemisphere. (d) Volume rendering of the brain after taking the two punches. A crack which occurred after the second punch can be recognized in the center of the brain. (e) Two sagittal slices at approximately the same position as in (c). The location of the punches can be clearly recognized, enabling a valid comparison between the two high-resolution measurements in Fig. 3. Scale bars: 1 mm
Fig. 3
Fig. 3 Slices through the reconstructed density of 1 mm biopsy punches from both the right and left hemisphere of the paraffin-embedded mouse brain, with an ischemic stroke induced in the left hemisphere. (a) Sagittal slice through the right hemisphere at approximately the same position as in Fig. 2(b) and (d). The field of view of the measurement was increased by recording three tomograms at adjacent positions in height. Typical features as the cortex, hippocampus, ventricle and striatum can be recognized. (b) Corresponding sagittal slice through the left hemisphere. Compared to the counterpart from the right hemisphere, overall tissue density, especially in the region of the striatum, seems to be lower. (c) Magnified region of the slice through the (non-ischemic) right hemisphere depicted in (a). The position of this region is marked by a rectangle. Individual cells can be recognized as dark spots, while blood vessels exhibit light gray values. (d) Magnified view of the region marked by the rectangle in (b). Despite the lower overall tissue density, the number of cells is significantly increased compared to the right hemisphere. Note that for clarity, a few exemplary cells were marked by white arrows. Scale bars: 200 µm (a, b) and 50 µm (c, d)
Fig. 4
Fig. 4 3D visualization of the punches from the left and right hemisphere. (a) Volume renderings of the punches in which a darker gray value represents a higher electron density. The black cubes indicate the positions of the sub-volumes in (b) and (c), for which a cellular segmentation was performed. Note that the main part of the regions marked by the red rectangles in Fig. 3(a,b) is included in these sub-volumes. (b) Cellular distribution in a small sub-volume from the right hemisphere. (c) Cellular distribution in the corresponding sub-volume from the left hemisphere, showing a significantly larger density of cells.
Fig. 5
Fig. 5 3D visualization of the ventricles within the large overview scan of the intact brain. (a) Segmentation of the ventricles (blue) with respect to the entire mouse brain. (b) Gray value-based semi-automatic segmentation of the ventricles using a region-growing tool included in Avizo with a manually defined seeding point. The visual comparison of the right and left ventricle shows a decreased volume of the latter, which can be explained by a slight swelling of the left hemisphere due to the ischemic stroke.

Tables (1)

Tables Icon

Table 1 Experimental parameters used for imaging of a paraffin-embedded mouse brain. The ischemic stroke was induced in the left hemisphere.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ sys = ( M 1 ) 2 M 2 σ src 2 + M 2 σ det 2 .
I ( r , 0 ) = I ( r , z ) 1 γ 2 ϕ ( r ) .
ϕ ( r ) = 2 π F 1 [ [ I ( r , z ) I 0 1 ] | k 0 | 2 + α ] ,