Abstract

A detailed study of the condition of eggs was performed using tunable diode lasers to monitor free gas in hen eggs. We detected oxygen and water vapor signals from 13 unfertilized eggs and studied the growth of the egg air cell over a time period of 3 weeks. We also studied the gas exchange through the egg shell, which is of particular interest for fertilized eggs. Four fertilized and five unfertilized eggs were followed over 3 weeks, the hatching period for hen eggs, and significant variations were found both in time and for the two types of eggs. Our results indicate that the techniques could be developed for automatic control of egg freshness, as well as for monitoring the hatching progress of fertilized eggs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser spectroscopic studies of gas diffusion in alumina ceramics

Hao Zhang and Sune Svanberg
Opt. Express 24(3) 1986-1998 (2016)

Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research

Sune Svanberg, Guangyu Zhao, Hao Zhang, Jing Huang, Ming Lian, Tianqi Li, Shiming Zhu, Yiyun Li, Zheng Duan, Huiying Lin, and Katarina Svanberg
Opt. Express 24(6) A515-A527 (2016)

Development of a compact multipass oxygen sensor used for gas diffusion studies in opaque media

Jim Larsson, Liang Mei, Patrik Lundin, Joakim Bood, and Sune Svanberg
Appl. Opt. 54(33) 9772-9778 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Zaheer, “An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health,” Food Nutr. Sci. 6(13), 1208–1220 (2015).
    [Crossref]
  2. D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).
  3. Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).
  4. G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).
  5. R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
    [Crossref]
  6. E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
    [Crossref]
  7. S. Y. Wu and N. Han, “Optical non-destructive testing and grading of egg freshness,” Nongye Gongcheng Xuebao (Beijing) 5(4), 64–70 (1989).
  8. D. D. Fu and Q. H. Wang, “Predictive models for the detection of egg freshness, acidity and viscosity using hyper-spectral imaging,” Food Science 37(22), 173–179 (2016).
  9. W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
    [Crossref]
  10. R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
    [Crossref]
  11. Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).
  12. S. Demirel and K. Kirikçi, “Effect of different egg storage times on some egg quality characteristics and hatchability of pheasants (Phasianus colchicus),” Poult. Sci. 88(2), 440–444 (2009).
    [Crossref] [PubMed]
  13. C. J. Sun, X. L. Zhu, Y. Lu, and et al.., “Study on the effect of egg storage method and eggshell quality on egg freshness,” Chinese Egg Science and Technology Conference2010.
  14. A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
    [Crossref]
  15. L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
    [Crossref]
  16. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
    [Crossref] [PubMed]
  17. S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
    [Crossref]
  18. M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
    [Crossref]
  19. T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
    [Crossref]
  20. H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
    [Crossref] [PubMed]
  21. K. Svanberg and S. Svanberg, “Monitoring of free gas in-situ for medical diagnostics using laser spectroscopic techniques,” in Frontiers in Biophotonics for Translational Medicine, U. S. Dimish and M. Olivo (eds) (Springer, Singapore 2015) 307–321.
  22. J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
    [Crossref] [PubMed]
  23. H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
    [Crossref] [PubMed]
  24. E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
    [Crossref] [PubMed]
  25. W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
    [Crossref]
  26. L. Mei and S. Svanberg, “Wavelength modulation spectroscopy – Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
    [Crossref] [PubMed]
  27. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  28. Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
    [Crossref]
  29. B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
    [Crossref]
  30. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
    [Crossref]
  31. A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
    [PubMed]
  32. US Food and Drug Administration, https://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072916.htm
  33. www.safefood360.com , “Water activity in foods, White paper” (2014)
  34. P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
    [Crossref]

2016 (2)

D. D. Fu and Q. H. Wang, “Predictive models for the detection of egg freshness, acidity and viscosity using hyper-spectral imaging,” Food Science 37(22), 173–179 (2016).

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

2015 (5)

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

K. Zaheer, “An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health,” Food Nutr. Sci. 6(13), 1208–1220 (2015).
[Crossref]

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

L. Mei and S. Svanberg, “Wavelength modulation spectroscopy – Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
[Crossref] [PubMed]

2014 (2)

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).

2013 (2)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

2011 (1)

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

2009 (1)

S. Demirel and K. Kirikçi, “Effect of different egg storage times on some egg quality characteristics and hatchability of pheasants (Phasianus colchicus),” Poult. Sci. 88(2), 440–444 (2009).
[Crossref] [PubMed]

2008 (3)

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

2007 (1)

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

2006 (3)

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

2001 (1)

1996 (1)

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

1994 (1)

P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
[Crossref]

1989 (1)

S. Y. Wu and N. Han, “Optical non-destructive testing and grading of egg freshness,” Nongye Gongcheng Xuebao (Beijing) 5(4), 64–70 (1989).

1981 (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

1974 (1)

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

1951 (1)

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Åkeson, J.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Alnis, J.

Andersson-Engels, S.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

Ar, A.

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Bamelis, F.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Buck, A. L.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

Chen, H.

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

Chen, P.

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

Comelli, E. M.

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

de Baerdemaeker, J.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

de Baerdemaeker, J. G.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

de Ketelaere, B.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

Decuypere, D.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

Decuypere, E.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Demirel, S.

S. Demirel and K. Kirikçi, “Effect of different egg storage times on some egg quality characteristics and hatchability of pheasants (Phasianus colchicus),” Poult. Sci. 88(2), 440–444 (2009).
[Crossref] [PubMed]

Du, D. M.

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

Fellman, V.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Fu, D. D.

D. D. Fu and Q. H. Wang, “Predictive models for the detection of egg freshness, acidity and viscosity using hyper-spectral imaging,” Food Science 37(22), 173–179 (2016).

Greene, R. B.

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Guan, Z. G.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Han, N.

S. Y. Wu and N. Han, “Optical non-destructive testing and grading of egg freshness,” Nongye Gongcheng Xuebao (Beijing) 5(4), 64–70 (1989).

Harns, V.

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Harwigsson, I.

P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
[Crossref]

He, W.

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

Hidalgo, A.

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hou, Z. C.

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

Huang, J.

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

Jönsson, B.

P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
[Crossref]

Kamers, B.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Karoui, R.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

Kauranen, P.

P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
[Crossref]

Kemps, B.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

Kirikçi, K.

S. Demirel and K. Kirikçi, “Effect of different egg storage times on some egg quality characteristics and hatchability of pheasants (Phasianus colchicus),” Poult. Sci. 88(2), 440–444 (2009).
[Crossref] [PubMed]

Larsson, M.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Lewander, A. M.

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

Lewander, M.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Li, J.

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

Li, J. Y.

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

Li, T.

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

Li, T. Q.

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

Li, W. S.

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

Li, Y.

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

Lin, H.

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

Lin, H. Y.

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

Lindberg, S.

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

Liu, Y.

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

Lu, Y.

C. J. Sun, X. L. Zhu, Y. Lu, and et al.., “Study on the effect of egg storage method and eggshell quality on egg freshness,” Chinese Egg Science and Technology Conference2010.

Lundin, P.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Ma, M. H.

Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).

Mara, L.

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

McLaren, B. A.

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Mei, L.

Merten, K. R.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

Mertens, K.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Olsson, A.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Ouyang, A.

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

Paganelli, C. V.

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Pan, L. Q.

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

Persson, L.

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Rahn, H.

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Reeves, R. B.

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Rossi, M.

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

Sauter, E. A.

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Schoenheidt, R.

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

Shu, G. W.

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

Siemund, R.

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

Sjöholm, M.

Somesfalean, G.

Stadelman, W. J.

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Sun, C. J.

C. J. Sun, X. L. Zhu, Y. Lu, and et al.., “Study on the effect of egg storage method and eggshell quality on egg freshness,” Chinese Egg Science and Technology Conference2010.

Svanberg, E. K.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Svanberg, K.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

Svanberg, S.

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

L. Mei and S. Svanberg, “Wavelength modulation spectroscopy – Digital detection of gas absorption harmonics based on Fourier analysis,” Appl. Opt. 54(9), 2234–2243 (2015).
[Crossref] [PubMed]

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of gas dispersed in scattering media,” Opt. Lett. 26(1), 16–18 (2001).
[Crossref] [PubMed]

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

Svensson, T.

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Tona, K.

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Tu, K.

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

Tu, S. C.

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

Wang, F. N.

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

Wang, Q. H.

D. D. Fu and Q. H. Wang, “Predictive models for the detection of egg freshness, acidity and viscosity using hyper-spectral imaging,” Food Science 37(22), 173–179 (2016).

Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).

Wang, X.

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

Wu, S. Y.

S. Y. Wu and N. Han, “Optical non-destructive testing and grading of egg freshness,” Nongye Gongcheng Xuebao (Beijing) 5(4), 64–70 (1989).

Xu, G.

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

Xu, G. Y.

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

Yang, N.

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

Ying, Y.

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

Zaheer, K.

K. Zaheer, “An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health,” Food Nutr. Sci. 6(13), 1208–1220 (2015).
[Crossref]

Zhang, G.

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

Zhang, H.

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

Zhang, L.

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

Zhang, T.

Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).

Zhang, W.

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

Zhu, X. L.

C. J. Sun, X. L. Zhu, Y. Lu, and et al.., “Study on the effect of egg storage method and eggshell quality on egg freshness,” Chinese Egg Science and Technology Conference2010.

Agric. Food Chem. (1)

L. Mara, A. Hidalgo, E. M. Comelli, and M. Rossi, “Evolution of chemical and physical albumen characteristics during the storage of shell eggs,” Agric. Food Chem. 44(5), 1235–1240 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food monitoring based on diode laser gas spectroscopy,” Appl. Phys. B 93(2-3), 619–625 (2008).
[Crossref]

Condor (1)

A. Ar, C. V. Paganelli, R. B. Reeves, R. B. Greene, and H. Rahn, “The avian egg: water vapor conductance, shell thickness, and functional pore area,” Condor 76(2), 153–158 (1974).
[Crossref]

Eur. Food Res. Technol. (2)

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, K. R. Merten, R. Schoenheidt, E. Decuypere, and J. de Baerdemaeker, “Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2 - Evolution of egg yolk,” Eur. Food Res. Technol. 223(2), 180–188 (2006).
[Crossref]

R. Karoui, B. Kemps, F. Bamelis, B. de Ketelaere, D. Decuypere, and J. de Baerdemaeker, “Methods to evaluate egg freshness in research and industry: A review,” Eur. Food Res. Technol. 222(5-6), 727–732 (2006).
[Crossref]

Food Control (1)

Y. Liu, Y. Ying, A. Ouyang, and Y. Li, “Measurement of internal quality in chicken eggs using visible transmittance spectroscopy technology,” Food Control 18(1), 18–22 (2007).
[Crossref]

Food Nutr. Sci. (1)

K. Zaheer, “An updated review on chicken eggs: Production, consumption, management aspects and nutritional benefits to human health,” Food Nutr. Sci. 6(13), 1208–1220 (2015).
[Crossref]

Food Sci. Techn. (2)

D. M. Du, F. N. Wang, J. Y. Li, and G. Y. Xu, ”The laws of the egg freshness change with storage conditions,” Food Sci. Techn. 2014(5), 26–29 (2014).

G. W. Shu, H. Chen, L. Zhang, and X. Wang, “Advance in the research on methods to evaluate egg freshness,” Food Sci. Techn. 2008(10), 233–236 (2008).

Food Science (1)

D. D. Fu and Q. H. Wang, “Predictive models for the detection of egg freshness, acidity and viscosity using hyper-spectral imaging,” Food Science 37(22), 173–179 (2016).

J. Appl. Meteorol. (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

J. Biomed. Opt. (1)

H. Zhang, J. Huang, T. Li, S. Svanberg, and K. Svanberg, “Optical detection of middle ear infection using spectroscopic techniques: phantom experiments,” J. Biomed. Opt. 20(5), 057001 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

J. Huang, H. Zhang, T. Li, H. Lin, K. Svanberg, and S. Svanberg, “Assessment of human sinus cavity air volume using tunable diode laser spectroscopy, with application to sinusitis diagnostics,” J. Biophotonics 8(11-12), 985–992 (2015).
[Crossref] [PubMed]

J. Food Eng. (1)

W. Zhang, L. Q. Pan, S. C. Tu, G. Zhang, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng. 157, 41–48 (2015).
[Crossref]

J. Phys. Chem. (1)

P. Kauranen, I. Harwigsson, and B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98(5), 1411–1415 (1994).
[Crossref]

J. Sci. Food Agric. (1)

B. Kemps, F. Bamelis, B. de Ketelaere, K. Mertens, B. Kamers, K. Tona, E. Decuypere, and J. G. de Baerdemaeker, “Visible transmission spectroscopy for the assessment of egg freshness,” J. Sci. Food Agric. 86(9), 1399–1406 (2006).
[Crossref]

Laser Photonics Rev. (1)

S. Svanberg, “Gas in scattering media absorption spectroscopy – from basic studies to biomedical applications,” Laser Photonics Rev. 7(5), 779–796 (2013).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: A review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nongye Gongcheng Xuebao (Beijing) (2)

Q. H. Wang, T. Zhang, and M. H. Ma, “Oxygen breathing regularity of eggs in storage period monitoring by non-invasive micro-test technique,” Nongye Gongcheng Xuebao (Beijing) 30(5), 255–261 (2014).

S. Y. Wu and N. Han, “Optical non-destructive testing and grading of egg freshness,” Nongye Gongcheng Xuebao (Beijing) 5(4), 64–70 (1989).

Opt. Lett. (1)

Pediatr. Res. (1)

E. K. Svanberg, P. Lundin, M. Larsson, J. Åkeson, K. Svanberg, S. Svanberg, S. Andersson-Engels, and V. Fellman, “Diode laser spectroscopy for noninvasive monitoring of oxygen in the lungs of newborn infants,” Pediatr. Res. 79(4), 621–628 (2016).
[Crossref] [PubMed]

Poult. Sci. (2)

S. Demirel and K. Kirikçi, “Effect of different egg storage times on some egg quality characteristics and hatchability of pheasants (Phasianus colchicus),” Poult. Sci. 88(2), 440–444 (2009).
[Crossref] [PubMed]

E. A. Sauter, W. J. Stadelman, V. Harns, and B. A. McLaren, “Methods for measuring yolk index,” Poult. Sci. 30(4), 629–632 (1951).
[Crossref]

Rhinology (1)

A. M. Lewander, S. Lindberg, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Clinical study assessing information on the maxillary and frontal sinuses using diode laser gas spectroscopy,” Rhinology 50, 26 (2011).
[PubMed]

Zhongguo Xumu Zazhi (1)

Z. C. Hou, N. Yang, J. Li, and G. Xu, “Dynamics changes of the egg fresh index according to the storage time,” Zhongguo Xumu Zazhi 44(13), 42–45 (2008).

Other (7)

C. J. Sun, X. L. Zhu, Y. Lu, and et al.., “Study on the effect of egg storage method and eggshell quality on egg freshness,” Chinese Egg Science and Technology Conference2010.

US Food and Drug Administration, https://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072916.htm

www.safefood360.com , “Water activity in foods, White paper” (2014)

W. S. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Detection of free oxygen and water vapor in fertilized and unfertilized eggs by diode laser spectroscopy – Exploration of diagnostics possibilities,” J. Biophotonics (2017), doi:.
[Crossref]

T. Q. Li, H. Y. Lin, H. Zhang, K. Svanberg, and S. Svanberg, “Application of tunable diode laser spectroscopy in assessment of food quality,” Appl. Spectr. doi (2016).
[Crossref]

H. Y. Lin, W. S. Li, H. Zhang, P. Chen, W. He, S. Svanberg, and K. Svanberg, “Diagnostics of femoral head status in humans using laser spectroscopy – In vitro studies,” J. Biophotonics (2016), doi:.
[Crossref] [PubMed]

K. Svanberg and S. Svanberg, “Monitoring of free gas in-situ for medical diagnostics using laser spectroscopic techniques,” in Frontiers in Biophotonics for Translational Medicine, U. S. Dimish and M. Olivo (eds) (Springer, Singapore 2015) 307–321.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Interior structure of a hen egg (modified from a Bing Search image). (b) Photo of an egg under study, with the detector placed at the top of the egg while the laser light was injected laterally on the egg.
Fig. 2
Fig. 2 Experimental set up for Gas in Scattering Media Absorption Spectroscopy measurements on eggs.
Fig. 3
Fig. 3 (a). One of the eggs in the study with ink marks, where the small circle shows the location for laser light injection into the egg and the large circle on the top of the egg where the photodetector was placed. (b). GASMAS recording of oxygen inside an unfertilized egg and a fitted high-quality line-shape recording from ambient air. The Leq is about 16 mm. (c). Water vapor signal from an unfertilized egg and a fitted high-quality line-shape recording from ambient air. The Leq is about 18 mm. Sampling number is proportional to the frequency increase of the laser, and the laser tuning range shown in Figs. 3(b) and 3(c) corresponds to about 15 GHz or 0.04 nm.
Fig. 4
Fig. 4 Average Leq values with error bars for oxygen and water vapor for the thirteen unfertilized eggs. The water vapor data are plotted in two different ways using two assumptions: 1. The water vapor is due to free water inside the egg, and the data plotted correspond to 100% relative humidity in the enclosed volume. 2. The water vapor inside the egg has the same relative humidity as the air outside the shell.
Fig. 5
Fig. 5 Gas exchange measured in an unfertilized egg. During the first 10 minutes the egg remained in the nitrogen atmosphere, which still contained some residual oxygen. The time constant obtained from the fit is about 10 min.
Fig. 6
Fig. 6 Time evolution of the gas exchange time constant for unfertilized eggs. Average values for 5 eggs are given with error bars.
Fig. 7
Fig. 7 Gas exchange measurements in a fertilized egg, initially exposed to a moderately increased air concentration of oxygen. The time constant is evaluated to 5 minutes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = e kCl  1kCl
ΔI/I = ( I 0 I )/I =kCl.