Abstract

Current conventional clinical OCT systems image either only the anterior or the posterior eye during a single acquisition. This localized imaging limits conventional OCT’s use for characterizing global ocular morphometry and biometry, which requires knowledge of spatial relationships across the entire eye. We developed a “whole eye” optical coherence tomography system that simultaneously acquires volumes with a wide field-of-view for both the anterior chamber (14 x 14 mm) and retina (55°) using a single source and detector. This system was used to measure retinal curvature in a pilot population and compared against curvature of the same eyes measured with magnetic resonance imaging.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual band dual focus optical coherence tomography for imaging the whole eye segment

Shanhui Fan, Lin Li, Qian Li, Cuixia Dai, Qiushi Ren, Shuliang Jiao, and Chuanqing Zhou
Biomed. Opt. Express 6(7) 2481-2493 (2015)

Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch

Marco Ruggeri, Stephen R. Uhlhorn, Carolina De Freitas, Arthur Ho, Fabrice Manns, and Jean-Marie Parel
Biomed. Opt. Express 3(7) 1506-1520 (2012)

Versatile optical coherence tomography for imaging the human eye

Aizhu Tao, Yilei Shao, Jianguang Zhong, Hong Jiang, Meixiao Shen, and Jianhua Wang
Biomed. Opt. Express 4(7) 1031-1044 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [Crossref] [PubMed]
  3. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
    [Crossref] [PubMed]
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  5. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [Crossref] [PubMed]
  6. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
    [Crossref] [PubMed]
  7. S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009).
    [Crossref] [PubMed]
  8. M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
    [Crossref] [PubMed]
  9. R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
    [Crossref] [PubMed]
  10. A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
    [Crossref] [PubMed]
  11. C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
    [Crossref] [PubMed]
  12. M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
    [Crossref] [PubMed]
  13. K. Ohno-Matsui, “Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging,” Ophthalmology 121(9), 1798–1809 (2014).
    [Crossref] [PubMed]
  14. K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
    [Crossref] [PubMed]
  15. K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
    [Crossref] [PubMed]
  16. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [Crossref] [PubMed]
  17. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in SPIE BiOS, (SPIE, 2007), 11.
  18. A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
    [Crossref] [PubMed]
  19. W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).
  20. A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
    [Crossref] [PubMed]
  21. T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
    [Crossref] [PubMed]
  22. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  23. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  25. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  26. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
    [Crossref] [PubMed]
  27. I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
    [Crossref] [PubMed]
  28. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  29. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
    [Crossref] [PubMed]
  30. S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6(7), 2481–2493 (2015).
    [Crossref] [PubMed]
  31. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [Crossref] [PubMed]
  32. I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52–59 (2018).
    [Crossref]
  33. H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
    [Crossref] [PubMed]
  34. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
    [Crossref] [PubMed]
  35. H.-J. Kim, M. Kim, M. G. Hyeon, Y. Choi, and B.-M. Kim, “Full ocular biometry through dual-depth whole-eye optical coherence tomography,” Biomed. Opt. Express 9(2), 360–372 (2018).
    [Crossref] [PubMed]
  36. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared*,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  37. S. Marschall, C. Pedersen, and P. E. Andersen, “Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range,” Biomed. Opt. Express 3(7), 1620–1631 (2012).
    [Crossref] [PubMed]
  38. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
    [Crossref]
  39. J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Asymmetric wide-field optical model of the human eye with tilted and decentered crystalline lens that reproduces experimentally measured aberrations: errata,” Optica 5(11), 1461 (2018).
    [Crossref]
  40. B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
    [Crossref]
  41. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
    [Crossref] [PubMed]
  42. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  43. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004).
    [Crossref] [PubMed]
  44. A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
    [Crossref] [PubMed]
  45. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [Crossref] [PubMed]
  46. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
    [Crossref] [PubMed]
  47. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  48. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  49. A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
    [Crossref]
  50. P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
    [Crossref] [PubMed]
  51. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
    [Crossref] [PubMed]
  52. M. C. Brodsky and M. Vaphiades, “Magnetic resonance imaging in pseudotumor cerebri,” Ophthalmology 105(9), 1686–1693 (1998).
    [Crossref] [PubMed]
  53. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
    [Crossref] [PubMed]
  54. R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
    [Crossref] [PubMed]
  55. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  56. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
    [Crossref] [PubMed]
  57. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref] [PubMed]
  58. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref] [PubMed]
  59. W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
    [Crossref] [PubMed]
  60. L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
    [Crossref] [PubMed]
  61. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  62. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
    [Crossref] [PubMed]
  63. E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
    [Crossref] [PubMed]
  64. M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
    [Crossref] [PubMed]
  65. O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
    [Crossref] [PubMed]
  66. J. M. Pope, P. K. Verkicharla, F. Sepehrband, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia,” Biomed. Opt. Express 8(5), 2386–2395 (2017).
    [Crossref] [PubMed]
  67. S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
    [Crossref] [PubMed]

2018 (4)

2017 (3)

2016 (3)

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

2015 (8)

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6(7), 2481–2493 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
[Crossref]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

2014 (2)

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

K. Ohno-Matsui, “Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging,” Ophthalmology 121(9), 1798–1809 (2014).
[Crossref] [PubMed]

2013 (5)

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

2012 (10)

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
[Crossref] [PubMed]

H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

S. Marschall, C. Pedersen, and P. E. Andersen, “Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range,” Biomed. Opt. Express 3(7), 1620–1631 (2012).
[Crossref] [PubMed]

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

2011 (3)

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (2)

2008 (1)

A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
[Crossref] [PubMed]

2007 (2)

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
[Crossref]

2005 (2)

2004 (2)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (1)

2001 (2)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

2000 (2)

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[Crossref] [PubMed]

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

1998 (1)

M. C. Brodsky and M. Vaphiades, “Magnetic resonance imaging in pseudotumor cerebri,” Ophthalmology 105(9), 1686–1693 (1998).
[Crossref] [PubMed]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1974 (1)

Akiba, M.

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref] [PubMed]

Andersen, P. E.

Artal, P.

Atchison, D. A.

Aung, T.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Baumann, B.

Borja, D.

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

Bouma, B. E.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Braaf, B.

Brodsky, M. C.

M. C. Brodsky and M. Vaphiades, “Magnetic resonance imaging in pseudotumor cerebri,” Ophthalmology 105(9), 1686–1693 (1998).
[Crossref] [PubMed]

Bustamante, T.

Cable, A. E.

Carrasco-Zevallos, O.

Ce, Z.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Cense, B.

Chai, X.

Chan, K.-P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chang, Y.-C.

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Chen, A.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
[Crossref] [PubMed]

Chen, C.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Chen, Z.

Cheng, C. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Cheung, C. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Chew, P. T. K.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Chiu, S. J.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Choi, W.

Choi, Y.

Choma, M.

Chong, C.

Chou, T.-H.

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

Cwiklinski, L.

Dai, C.

de Boer, J. F.

de Castro, A.

De Freitas, C.

de Groot, M.

Dhalla, A.-H.

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Drexler, W.

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Duker, J. S.

Durkee, H.

El-Dairi, M. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Fan, S.

Farsiu, S.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

Findl, O.

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Friedman, D. S.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fukuda, S.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009).
[Crossref] [PubMed]

Gambra, E.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Goldstein, J. E.

A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
[Crossref] [PubMed]

Gonzalez, A.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grewal, D. S.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Grulkowski, I.

I. Grulkowski, S. Manzanera, L. Cwiklinski, F. Sobczuk, K. Karnowski, and P. Artal, “Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye,” Optica 5(1), 52–59 (2018).
[Crossref]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

Haigis, W.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

Hayashi, K.

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heilman, B. M.

Hilal, S.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

Ho, A.

Huang, D.

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
[Crossref] [PubMed]

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Hyeon, M. G.

Ikram, M. K.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Ishibashi, T.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

Itoh, M.

Izatt, J.

Izatt, J. A.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Asymmetric wide-field optical model of the human eye with tilted and decentered crystalline lens that reproduces experimentally measured aberrations: errata,” Optica 5(11), 1461 (2018).
[Crossref]

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
[Crossref]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
[Crossref] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

Jaeken, B.

Jaffe, G. J.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Jayaraman, V.

Jeong, H.-W.

Jiang, J.

Jiao, S.

Jones, C. E.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Kampik, A.

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Karnowski, K.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kawana, K.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009).
[Crossref] [PubMed]

Keller, B.

Kim, B.-M.

Kim, H.-J.

Kim, M.

Klein, T.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Kocaoglu, O. P.

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

Koch, D. D.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Kohnen, T.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Kolb, J. P.

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Kufner, C. L.

Kuo, A.

Kuo, A. N.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[Crossref] [PubMed]

LaRocca, F.

Lee, A. C.

A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
[Crossref] [PubMed]

Lee, S.-W.

Lege, B.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

Li, L.

Li, Q.

Li, X. T.

Li, Y.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
[Crossref] [PubMed]

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lin, R. C.

Liu, J. J.

Lu, C. D.

Lujan, B. J.

Ma, X. J.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Madjarova, V. D.

Mahmoud, T. H.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Makita, S.

Malkin, A. G.

A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
[Crossref] [PubMed]

Manns, F.

Manzanera, S.

Marcos, S.

Marschall, S.

Martinez-Enriquez, E.

Massof, R. W.

A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
[Crossref] [PubMed]

Mathur, A.

McNabb, R. P.

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Asymmetric wide-field optical model of the human eye with tilted and decentered crystalline lens that reproduces experimentally measured aberrations: errata,” Optica 5(11), 1461 (2018).
[Crossref]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

J. Polans, B. Jaeken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124–134 (2015).
[Crossref]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

Mehta, R.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Miller, N.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

Modegi, T.

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

Mohamed, A.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Morita, I.

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Moriyama, M.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Morosawa, A.

Mruthyunjaya, P.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Nagaoka, N.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

Nankivil, D.

Nelson, J. S.

Neubauer, A.

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Neubauer, A. S.

Nicholas, P.

Nolan, W. P.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Ohno-Matsui, K.

K. Ohno-Matsui, “Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging,” Ophthalmology 121(9), 1798–1809 (2014).
[Crossref] [PubMed]

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Ortiz, S.

Oshika, T.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009).
[Crossref] [PubMed]

Osung, K.

B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
[Crossref]

Palmer, K. F.

Parel, J.-M.

Park, B. H.

Pascual, D.

Pedersen, C.

Pepose, J. S.

A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
[Crossref] [PubMed]

Pérez-Merino, P.

Pierce, M. C.

Pircher, M.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Polans, J.

Pope, J. M.

Porciatti, V.

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

Potsaid, B.

Pritchard, N.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qazi, M. A.

A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
[Crossref] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[Crossref] [PubMed]

Remon, L.

Ren, Q.

Reznicek, L.

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Rollins, A.

Rollins, A. M.

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Rowaan, C.

Ruggeri, M.

Sakai, T.

Sarunic, M.

Saw, S. M.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Saxer, C. E.

Schmid, K. L.

Schneider, B.

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schuman, S. G.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Scott, D. H.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

See, J.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Sepehrband, F.

Shimada, N.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Shinohara, K.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

Shirayama, M.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Shure, M. A.

Siedlecki, D.

Smith, S. D.

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

Sobczuk, F.

So-Young, B.

B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
[Crossref]

Sravani, N. G.

Stinnett, S. S.

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Suheimat, M.

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tang, M.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
[Crossref] [PubMed]

Tearney, G. J.

Tokoro, T.

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Tomita, M.

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

Toth, C. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Uhlhorn, S. R.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

Vaphiades, M.

M. C. Brodsky and M. Vaphiades, “Magnetic resonance imaging in pseudotumor cerebri,” Ophthalmology 105(9), 1686–1693 (1998).
[Crossref] [PubMed]

Velasco-Ocana, M.

Verkicharla, P. K.

Vermeer, K. A.

Viehland, C.

Vienola, K. V.

Wang, L.

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

Waterman, G.

Westphal, V.

Wieser, W.

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

Williams, D.

Williams, S.

Wojtkowski, M.

Wong, T. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Yang, C.

Yao, Y.

Yasuno, Y.

Yatagai, T.

Yoon-Ho, K.

B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
[Crossref]

Yoshida, T.

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

Young, T. L.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

Zhang, J. Y.

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

Zhao, M.

Zhao, Y.

Zhou, C.

Am. J. Ophthalmol. (1)

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Biomed. Opt. Express (17)

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6(7), 2481–2493 (2015).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

H.-J. Kim, M. Kim, M. G. Hyeon, Y. Choi, and B.-M. Kim, “Full ocular biometry through dual-depth whole-eye optical coherence tomography,” Biomed. Opt. Express 9(2), 360–372 (2018).
[Crossref] [PubMed]

S. Marschall, C. Pedersen, and P. E. Andersen, “Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range,” Biomed. Opt. Express 3(7), 1620–1631 (2012).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, M. Zhao, F. Larocca, S. S. Stinnett, S. Farsiu, and J. A. Izatt, “Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities,” Biomed. Opt. Express 3(6), 1279–1290 (2012).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3(3), 633–649 (2012).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6(5), 1534–1552 (2015).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

E. Martinez-Enriquez, P. Pérez-Merino, M. Velasco-Ocana, and S. Marcos, “OCT-based full crystalline lens shape change during accommodation in vivo,” Biomed. Opt. Express 8(2), 918–933 (2017).
[Crossref] [PubMed]

M. Ruggeri, S. Williams, B. M. Heilman, Y. Yao, Y.-C. Chang, A. Mohamed, N. G. Sravani, H. Durkee, C. Rowaan, A. Gonzalez, A. Ho, J.-M. Parel, and F. Manns, “System for on- and off-axis volumetric OCT imaging and ray tracing aberrometry of the crystalline lens,” Biomed. Opt. Express 9(8), 3834–3851 (2018).
[Crossref] [PubMed]

O. Carrasco-Zevallos, D. Nankivil, B. Keller, C. Viehland, B. J. Lujan, and J. A. Izatt, “Pupil tracking optical coherence tomography for precise control of pupil entry position,” Biomed. Opt. Express 6(9), 3405–3419 (2015).
[Crossref] [PubMed]

J. M. Pope, P. K. Verkicharla, F. Sepehrband, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia,” Biomed. Opt. Express 8(5), 2386–2395 (2017).
[Crossref] [PubMed]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

A. C. Lee, M. A. Qazi, and J. S. Pepose, “Biometry and intraocular lens power calculation,” Curr. Opin. Ophthalmol. 19(1), 13–17 (2008).
[Crossref] [PubMed]

Eye (Lond.) (1)

K. Shinohara, M. Moriyama, N. Shimada, N. Nagaoka, T. Ishibashi, T. Tokoro, and K. Ohno-Matsui, “Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging,” Eye (Lond.) 27(11), 1233–1241 (2013).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

W. Haigis, B. Lege, N. Miller, and B. Schneider, “Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis,” Graefes Arch. Clin. Exp. Ophthalmol. 238(9), 765–773 (2000).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

K. Ohno-Matsui, M. Akiba, T. Modegi, M. Tomita, T. Ishibashi, T. Tokoro, and M. Moriyama, “Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia,” Invest. Ophthalmol. Vis. Sci. 53(10), 6046–6061 (2012).
[Crossref] [PubMed]

C. K. Hitzenberger, W. Drexler, R. A. Leitgeb, O. Findl, and A. F. Fercher, “Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT460 (2016).
[Crossref] [PubMed]

W. Wieser, T. Klein, A. Neubauer, L. Reznicek, A. Kampik, and R. Huber, “Feasability of ultrawide-field retinal-shape measurement with MHz-OCT,” Invest. Ophthalmol. Vis. Sci. 54, 1469 (2013).

T.-H. Chou, O. P. Kocaoglu, D. Borja, M. Ruggeri, S. R. Uhlhorn, F. Manns, and V. Porciatti, “Postnatal elongation of eye size in DBA/2J mice compared with C57BL/6J mice: in vivo analysis with whole-eye OCT,” Invest. Ophthalmol. Vis. Sci. 52(6), 3604–3612 (2011).
[Crossref] [PubMed]

S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. K. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(8), 3683–3688 (2007).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior Eye Shape Measurement With Retinal OCT Compared to MRIPosterior Eye Shape Measurement With Retinal OCT,” Invest. Ophthalmol. Vis. Sci. 57, 196 (2016).
[Crossref]

J. Cataract Refract. Surg. (2)

L. Wang, M. Shirayama, X. J. Ma, T. Kohnen, and D. D. Koch, “Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm,” J. Cataract Refract. Surg. 37(11), 2018–2027 (2011).
[Crossref] [PubMed]

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg. 36(12), 2115–2122 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

B. So-Young, K. Osung, and K. Yoon-Ho, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of felds created with time delays greater than the coherence time,” Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007).
[Crossref]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Ophthalmology (6)

R. P. McNabb, S. Farsiu, S. S. Stinnett, J. A. Izatt, and A. N. Kuo, “Optical coherence tomography accurately measures corneal power change from laser refractive surgery,” Ophthalmology 122(4), 677–686 (2015).
[Crossref] [PubMed]

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology 116(5), 882–889 (2009).
[Crossref] [PubMed]

M. Moriyama, K. Ohno-Matsui, K. Hayashi, N. Shimada, T. Yoshida, T. Tokoro, and I. Morita, “Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging,” Ophthalmology 118(8), 1626–1637 (2011).
[Crossref] [PubMed]

K. Ohno-Matsui, “Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging,” Ophthalmology 121(9), 1798–1809 (2014).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, J. Y. Zhang, B. Potsaid, V. Jayaraman, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers,” Ophthalmology 120(11), 2184–2190 (2013).
[Crossref] [PubMed]

M. C. Brodsky and M. Vaphiades, “Magnetic resonance imaging in pseudotumor cerebri,” Ophthalmology 105(9), 1686–1693 (1998).
[Crossref] [PubMed]

Opt. Express (11)

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
[Crossref] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[Crossref] [PubMed]

H.-W. Jeong, S.-W. Lee, and B.-M. Kim, “Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging,” Opt. Express 20(17), 19148–19159 (2012).
[Crossref] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20(6), 6109–6115 (2012).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

Opt. Lett. (6)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, “Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source,” Opt. Lett. 38(3), 338–340 (2013).
[Crossref] [PubMed]

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett. 37(11), 1883–1885 (2012).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[Crossref] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004).
[Crossref] [PubMed]

Optica (3)

Optom. Vis. Sci. (1)

A. G. Malkin, J. E. Goldstein, and R. W. Massof, “Interpretation of health and vision utilities in low vision patients,” Optom. Vis. Sci. 89(3), 288–295 (2012).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” in SPIE BiOS, (SPIE, 2007), 11.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Whole eye OCT system schematic. Created using custom optics and optomechanics. Polarization was utilized to separate the imaging channels. Translation stages prior to the scanning galvanometers were placed such that without changing any optics utilized for imaging the anterior chamber, they allow for control and optimization of posterior segment imaging including eye length and Diopter focus control. A semiconductor optical amplifier (SOA) with optical isolators (ISO) was used to increase source output power.
Fig. 2
Fig. 2 Custom whole eye sample arm optical and optomechanical design. A) Solidworks rendering of sample arm optics and optomechanics. Starting from final imaging objective and working back to OCT input fiber collimator A1: Air-spaced achromatic doublet; A2: Wire-grid polarizing beam splitter cube to recombine anterior chamber and retinal imaging paths; A3: Pair of air-spaced achromatic doublets; A4: Dichroic mirror allowing for visible light of fixation target (A18) to pass through; A5: Dichroic mirror allowing 851 nm light of iris camera (A17) LEDs (A19) to pass through; A6: Dielectric polarizing beam splitter cube to separate anterior chamber and retinal imaging paths; A7: Air-spaced achromatic triplet; A8: Superior-inferior scanning mirror; A9 and A10: Pair of air-spaced achromatic triplets to image the temporal-nasal scanning mirror (not visible) on to the superior-inferior scanning mirror (A8); A11: Dielectric polarizing beam splitter cube to recombine anterior chamber and retinal imaging paths; A12: Optical path length delay for anterior chamber path; A13: Achromatic doublet on mechanized stage to allow for Diopter correction in the retinal imaging path independently of the anterior chamber path; A14: Mechanized stage that independently adjusts the optical path length of the retinal imaging path to account for various ocular axial lengths; A15: Dielectric polarizing beam splitter cube that separates anterior chamber and retinal imaging paths; A16: Parabolic mirror collimator; A17: Iris imaging camera; A18: OLED Fixation target and relay optics; A19: 851 nm illumination LEDs for iris camera; B) Sample arm ZEMAX optical design drawing. Drawing includes all optics following polarization path length encoding optics (see Fig. 1). Beam path shown for the central anterior chamber imaging path. Retinal imaging transmits through both beam splitters (B6 and B2). B1-B10 correspond directly to A1-A10 with B11 showing the location of the temporal-nasal scanning mirror hidden in A. Here, the scanning mirror 4-F imaging telescope (B8-B11) was rotated 90° for visualization purposes. C) Photograph of wide-field whole eye OCT sample arm as implemented.
Fig. 3
Fig. 3 Point spread functions for both retinal and anterior chamber imaging paths along both the temporal-nasal and superior-inferior imaging planes. The tangential (along the temporal-nasal plane) PSFs are in red and sagittal (along the superior-inferior plane) PSFs are in blue. Shown are the central, half-way, and maximum positive scan positions for each imaging path.
Fig. 4
Fig. 4 Segmentation of the retinal pigment epithelium along a single averaged radial scan with the optic nerve head present. A) Initial rough manual segmentation of the RPE. This segmentation serves as a guide line for an automated segmentation algorithm and only needs to be a rough estimate. B) Automatic graph-theory based segmentation of the RPE using the pilot guide from A.
Fig. 5
Fig. 5 Ocular axial length measurement. A) Solidworks rendering of phantom eye model for axial length calibration B) Full-depth averaged radial scan with dispersion compensation optimized for retinal path. OPLAnterior corresponds to the location of the anterior chamber image plane and 1st order coherence revival term within the B-scan (located in the inferior half of the image). OPLPosterior corresponds to the retinal imaging plane and the 0th order coherence revival term (located in the superior half of the image). The ΔOPLRetina and ΔOPLCornea terms are used for biometry and correspond to the distance of each structure to their relative image plane. The ΔOPLRetina takes into account the index of refraction of the vitreous (ng-vitreous ≈1.344).
Fig. 6
Fig. 6 ZEMAX ray trace model of individual subject where above descried parameters were adjusted A) Retinal imaging path of a single scan position with subject eye modeled using previously calculated subject position and axial length. A script moves the beam within the model and the chief ray vector position and angle at the retina is calculated and stored. B) Zoom of modified Polans eye model using axial length of the subject.
Fig. 7
Fig. 7 Retinal curvature estimation for OCT and MRI A) Whole eye OCT averaged radial retinal scan as acquired with RPE segmentation. B) Dewarped retinal OCT image and segmentation from Fig. 7(A) C) MRI image with optical axis and 90° segmentation region. (Single images are shown for illustration. Curvature measurement was performed on all images within a volume for both OCT and MRI.)
Fig. 8
Fig. 8 Whole eye OCT image plane calibration. A) USAF 1951 test chart at anterior chamber image plane with a field-of-view smaller than other volume acquisitions to better visualize Groups 4 and 5. B) Averaged radial scan of phantom eye for axial length calibration. Anterior surface of the phantom is at the top of the image with saturation artifacts present due to lens apex and lens tube surfaces. Retinal phantom surface with alignment targets (white arrow) and surface segmentation is at the bottom of the image.
Fig. 9
Fig. 9 Whole eye OCT volumetric renderings. A) Right eye of young normal subject with full view of anterior chamber and view of retina from macula to arcades. Acquired with ANSI Z136.1-2014. B) Left eye of normal subject acquired with ANSI Z80.36-2016. Saccade during acquisition was present in both volumes, however, because of the scanning optics, the loss of information appears in the inferior region of the retina and the superior region of the anterior chamber. C) Left eye of papilledema subject with elevated nerve head present (white arrow) acquired with ANSI Z80.36-2016.
Fig. 10
Fig. 10 Whole eye OCT registered and averaged B-scans. Anterior chamber and retinal regions of the B-scans processed separately, cropped, and reoriented in an anatomically correct orientation A) Normal subject with anterior crystalline lens shown. Taken from temporal-nasal radial from averaged radial volume. B) Pseudophakic subject with intraocular lens seen below the iris and eye lids surrounding cornea. Taken from inferior-superior radial from averaged radial volume.
Fig. 11
Fig. 11 Left eye of subject with cataract with representative whole eye OCT (ANSI Z80.36-2016) and MRI images. Cataract in this eye limited light throughput to retina. However even with this limitation, accurate segmentation of the RPE was possible. A) Acquired retinal whole eye OCT averaged radial scan and segmentation B) Dewarped whole eye OCT averaged radial scan and segmentation with isotropic scaling. Average Rc was measured to be 11.5 mm. C) MRI slice showing left eye with cataract present. Measured Rc was 11.2 mm.
Fig. 12
Fig. 12 A) Boxplot of pilot study comparing measured retinal curvature with whole eye OCT (red) and MRI (blue). A single papilledema subject (shown in green) was measured with whole eye OCT and was flatter than our normal population by more than four standard deviations. B) Bland-Altman comparison of curvature between MRI and OCT.
Fig. 13
Fig. 13 Right eye of subject with papilledema and elevated intracranial pressure A) Fundus photograph with characteristic blurring of optic disc margins indicative of optic nerve head edema B) CT image cropped to show the right eye of the subject. C) Acquired retinal whole eye OCT (ANSI Z80.36-2016) averaged radial scan and segmentation. The bright, vertical central saturation artifact is from corneal reflection. D) De-warped OCT image and segmentation with isotropic scaling. Measured Rc is 14.0 mm which is flatter than normal and consistent with increased intracranial pressure.

Metrics