Abstract

Digital holography is a well-accepted method for phase imaging. However, the phase of the object is always embedded in aberrations. Here, we present a digital holographic phase imaging with the aberrations fully compensated, including the high order aberrations. Instead of using pre-defined aberration models or 2D fitting, we used the simpler and more flexible 1D fitting. Although it is 1D fitting, data across the whole plane could be used. Theoretically, all types of aberrations can be compensated with this method. Experimental results show that the aberrations have been fully compensated and the pure object phase can be obtained for further studies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram

Tristan Colomb, Jonas Kühn, Florian Charrière, Christian Depeursinge, Pierre Marquet, and Nicolas Aspert
Opt. Express 14(10) 4300-4306 (2006)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy

Xiangyu Zhang, Jiasong Sun, Zuxin Zhang, Yao Fan, Qian Chen, and Chao Zuo
Appl. Opt. 58(2) 389-397 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
    [Crossref] [PubMed]
  2. B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci Rep 3(2013).
    [Crossref]
  3. P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” in (SPIE, 2014), 15.
  4. G. Popescu, “Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics,” in Methods in Cell Biology (Academic Press, 2008), pp. 87–115.
  5. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
    [Crossref] [PubMed]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  7. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref] [PubMed]
  8. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23(11), 2944–2953 (2006).
    [Crossref] [PubMed]
  9. V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
    [Crossref] [PubMed]
  10. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [Crossref] [PubMed]
  11. C. Trujillo, R. Castañeda, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, “Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy,” Appl. Opt. 55(36), 10299–10306 (2016).
    [Crossref] [PubMed]
  12. T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25(13), 15043–15057 (2017).
    [Crossref] [PubMed]
  13. E. Sánchez-Ortiga, A. Doblas, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Aberration compensation for objective phase curvature in phase holographic microscopy: comment,” Opt. Lett. 39(3), 417 (2014).
    [Crossref] [PubMed]
  14. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [Crossref] [PubMed]
  15. J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
    [Crossref]
  16. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
    [Crossref] [PubMed]
  17. X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.
  18. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
    [Crossref]
  19. Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
    [Crossref]
  20. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [Crossref] [PubMed]
  21. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27(13), 1108–1110 (2002).
    [Crossref] [PubMed]
  22. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [Crossref] [PubMed]
  23. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998), pp. 103-121.

2017 (1)

2016 (2)

V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
[Crossref] [PubMed]

C. Trujillo, R. Castañeda, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, “Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy,” Appl. Opt. 55(36), 10299–10306 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (2)

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Phase aberration compensation in digital holographic microscopy based on principal component analysis,” Opt. Lett. 38(10), 1724–1726 (2013).
[Crossref] [PubMed]

2011 (1)

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

2010 (1)

2009 (1)

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

2007 (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

2006 (4)

2005 (1)

2003 (1)

2002 (1)

1999 (1)

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Aspert, N.

Asundi, A.

Bourquin, S.

Bui, V.

Castañeda, R.

Chang, L.-C.

Charrière, F.

Chen, Q.

Colomb, T.

Coppola, G.

Cuche, E.

De Nicola, S.

Depeursinge, C.

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[Crossref] [PubMed]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
[Crossref] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23(11), 2944–2953 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Di, J.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Doblas, A.

Dong, M.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Ehlers, M. D.

Ferraro, P.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

Garcia-Sucerquia, J.

Grilli, S.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[Crossref] [PubMed]

Jiang, H.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

John, R.

V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
[Crossref] [PubMed]

Kato, J.

Khare, K.

V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
[Crossref] [PubMed]

Kim, M. K.

Kühn, J.

Lam, V.

Ma, H.-w.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Magistretti, P. J.

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
[Crossref] [PubMed]

Magro, C.

Marian, A.

Marquet, P.

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
[Crossref] [PubMed]

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006).
[Crossref] [PubMed]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
[Crossref] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23(11), 2944–2953 (2006).
[Crossref] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Martínez-Corral, M.

Matsumura, T.

Miccio, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Montfort, F.

Nehmetallah, G.

Newpher, T. M.

Nguyen, T.

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Pandiyan, V. P.

V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
[Crossref] [PubMed]

Petrocellis, L. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Piedrahita-Quintero, P.

Pierattini, G.

Qu, W.

Raub, C. B.

Saavedra, G.

Sánchez-Ortiga, E.

Shaked, N. T.

Sun, W.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Tao, S.

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

Trujillo, C.

Wang, D.

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

Wang, D.-d.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Wang, H.-t.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Wang, X.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Wang, Y.

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

Wax, A.

Yamaguchi, I.

Yan, X.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Yu, L.

Zhang, Y.

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

Zhang, Y.-s.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

Zhao, J.

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Zuo, C.

Annu. Rev. Biomed. Eng. (1)

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Exploring neural cell dynamics with digital holographic microscopy,” Annu. Rev. Biomed. Eng. 15(1), 407–431 (2013).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. D. Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90(4), 041104 (2007).
[Crossref]

Chin. Phys. Lett. (1)

Y. Zhang, D. Wang, Y. Wang, and S. Tao, “Automatic Compensation of Total Phase Aberrations in Digital Holographic Biological Imaging,” Chin. Phys. Lett. 28(11), 114209 (2011).
[Crossref]

J. Biomed. Opt. (1)

V. P. Pandiyan, K. Khare, and R. John, “Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach,” J. Biomed. Opt. 21(10), 106003 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. Di, J. Zhao, W. Sun, H. Jiang, and X. Yan, “Phase aberration compensation of digital holographic microscopy based on least squares surface fitting,” Opt. Commun. 282(19), 3873–3877 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Other (5)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998), pp. 103-121.

X. Wang, H.-w. Ma, D.-d. Wang, M. Dong, Y.-s. Zhang, and H.-t. Wang, “Automatic phase aberration compensation and imaging of digital holographic microscopy,” in Second International Conference on Photonics and Optical Engineering, (SPIE, 2017), 10.

B. Joshi, I. Barman, N. C. Dingari, N. Cardenas, J. S. Soares, R. R. Dasari, and S. Mohanty, “Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media,” Sci Rep 3(2013).
[Crossref]

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” in (SPIE, 2014), 15.

G. Popescu, “Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics,” in Methods in Cell Biology (Academic Press, 2008), pp. 87–115.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Procedure for aberration compensation. STD, standard deviation; φre, residual phase aberration; φq, quantified phase aberration; 1DSPF, one-dimensional standard polynomials fitting.
Fig. 2
Fig. 2 Schematic of the DHPI system, (a) for reflection imaging and (b) for transmission imaging. NF, neutral density filter; BE, beam expander with spatial filter; λ/2, half-wave plate; BS, beam splitter; SLM, spatial light modulator; L, lens; P, polarizer; MO, microscope objective; CMOS, complementary metal oxide semiconductor. The focal length of lens L1 and L2 are 300 mm.
Fig. 3
Fig. 3 Reconstructed intensity (a) and phase distribution before (b) and after (c) unwrapping. Only regions of interest (ROI) are shown. The color bars indicate the phase in radians. Scale bar: 20 μm.
Fig. 4
Fig. 4 Residual phase distribution (left) and quantified aberration φq (right) in each iteration. From (a) to (g), the times of iterations are 1, 2, 3, 4, 5, 6 and 7, respectively. Yellow arrows indicate the uv directions along which the fitting was executed. The residual phase distribution is showed in wrapped status. Color bar for wrapped phase: from black to white the values are –π to π. The other color bars indicate the phase in radians. Scale bar: 20 μm.
Fig. 5
Fig. 5 Aberration compensation results. (a): phase distribution after compensating the tilt and defocusing aberrations only; (b): object phase after compensating the total aberrations. The color bars indicate the phase in radians. Scale bar: 20 μm.
Fig. 6
Fig. 6 Intensity (a) and phase images (b, c, d) of C2C12 cells. The phase before and after aberration compensation are given in (b) and (c), respectively. The area near the yellow arrow in (c) is enlarged and inversed in (d) with pseudo three-dimensional display. The brightness of intensity image has been increased 15% for observation. The color bars indicate the phase in radians. Scale bar: 20 μm.
Fig. 7
Fig. 7 Phase distribution of MCF-7 cells after aberration compensation with 2D ZPF (a) and 1DSPF (b). The area near the red arrow in (b) is enlarged, reversed and showed in (c) with pseudo three-dimensional display. Reversed phase distributions of (a) and (b), along the yellow line profile in (a), are presented in (d) with red dotted line and blue solid line, respectively. The color bars indicate the phase in radians. Scale bar: 20 μm.

Tables (2)

Tables Icon

Table 1 Relationship between the aberration coefficients Pk,l and the polynomial coefficients (an and bn)

Tables Icon

Table 2 Fitting directions and STDs of residual aberration in each iteration

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= | O | 2 + | R | 2 + O * R+O R *
O ia R ia * = A B exp[ i( φ O + φ ta ) ]
{ f u = a 0 + a 1 u+...+ a n u n f v = b 0 + b 1 v+...+ b n v n
φ q = k=0 4 l=0 4 P k,l x k y l ,k+l4

Metrics