Abstract

Biopsy needles with embedded force sensors can eliminate the needle deflection and the needle targeting failure risks during MRI guided biopsy procedures. Fabry-Pérot interferometry (FPI) based sensors are small, compact and immune to electromagnetic and RF interferences, and therefore they are suitable for needle guidance under MRI. In this work, an FPI based fiber optic force sensor design and its integration to an 18-gauge MRI compatible biopsy needle are presented. The custom designed FPI sensor provides a force measurement range up to 13 N with a resolution of 0.1 N through benchtop experiments. The MRI compatibility of the sensor was evaluated using a commercially available prostate phantom under MRI.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber technology enables smart needles for epidurals: an in-vivo swine study

Benito Carotenuto, Armando Ricciardi, Alberto Micco, Ezio Amorizzo, Marco Mercieri, Antonello Cutolo, and Andrea Cusano
Biomed. Opt. Express 10(3) 1351-1364 (2019)

Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers

Francois Parent, Sebastien Loranger, Koushik Kanti Mandal, Victor Lambin Iezzi, Jerome Lapointe, Jean-Sébastien Boisvert, Mohamed Diaa Baiad, Samuel Kadoury, and Raman Kashyap
Biomed. Opt. Express 8(4) 2210-2221 (2017)

Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

Wei-Cheng Kuo, Jongsik Kim, Nathan D. Shemonski, Eric J. Chaney, Darold R. Spillman, and Stephen A. Boppart
Biomed. Opt. Express 3(6) 1149-1161 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
    [Crossref] [PubMed]
  2. I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
    [Crossref] [PubMed]
  3. L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
    [Crossref] [PubMed]
  4. M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
    [Crossref] [PubMed]
  5. H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
    [Crossref] [PubMed]
  6. W. Shang, H. Su, G. Li, and G. S. Fischer, “Teleoperation system with hybrid pneumatic-piezoelectric actuation for MRI-guided needle insertion with haptic feedback,” in Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, (IEEE, 2013), 4092–4098.
  7. J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
    [Crossref]
  8. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).
  9. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
    [Crossref] [PubMed]
  10. S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors, Second Edition (CRC Press, 2008).
  11. S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
    [Crossref]
  12. M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
    [Crossref]
  13. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
    [Crossref]
  14. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Springer Science & Business Media, 2013).
  15. K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).
  16. X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
    [Crossref]
  17. Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
    [Crossref]
  18. K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.
  19. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
    [Crossref]
  20. M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
    [Crossref] [PubMed]
  21. U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
    [Crossref] [PubMed]
  22. S. B. Kesner and R. D. Howe, “Design principles for rapid prototyping forces sensors using 3-D printing,” IEEE/ASME Trans. Mechatron. PP(99), 1–5 (2011).
    [Crossref] [PubMed]
  23. T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
    [Crossref]
  24. W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
    [Crossref]

2017 (1)

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

2016 (2)

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

2015 (1)

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

2013 (2)

J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
[Crossref]

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

2012 (2)

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

2011 (2)

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

S. B. Kesner and R. D. Howe, “Design principles for rapid prototyping forces sensors using 3-D printing,” IEEE/ASME Trans. Mechatron. PP(99), 1–5 (2011).
[Crossref] [PubMed]

2010 (2)

M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
[Crossref] [PubMed]

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

2009 (1)

S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
[Crossref]

2001 (1)

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

2000 (1)

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

1991 (3)

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[Crossref] [PubMed]

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

Afonso, P. D.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Ahlman, M.

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Anastasiadis, A. G.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Beggs, I.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Bloem, J. L.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Bohndorf, K.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Breitenseher, M.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Bremer, K.

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Chen, K.

K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.

Choyke, P.

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Claus, R. O.

Claussen, C. D.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

de Jonge, M. C.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Desai, J. P.

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

Feng, C.

S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
[Crossref]

Fischer, G. S.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Gorny, K. R.

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

Greenwood, B.

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

Gullapalli, R.

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

Gunther, M. F.

Hata, N.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Hatakoshi, G.

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

Hogg, W. D.

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

Howe, R. D.

S. B. Kesner and R. D. Howe, “Design principles for rapid prototyping forces sensors using 3-D printing,” IEEE/ASME Trans. Mechatron. PP(99), 1–5 (2011).
[Crossref] [PubMed]

M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
[Crossref] [PubMed]

Iordachita, I. I.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Ishikawa, M.

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

Itaya, K.

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

Janzen, D.

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

Kesner, S. B.

S. B. Kesner and R. D. Howe, “Design principles for rapid prototyping forces sensors using 3-D printing,” IEEE/ASME Trans. Mechatron. PP(99), 1–5 (2011).
[Crossref] [PubMed]

Kitatani, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

Kondow, M.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

Krestan, C.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Kruck, S.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

Lalam, R. K.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Leen, G.

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Lewis, E.

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Lichy, M.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Lindenberg, L.

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Liu, X.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Lochmann, S.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

May, R. G.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Measures, R. M.

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

Mena, E.

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Moss, B.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Mueller, I.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Murphy, K. A.

Mynderse, L. A.

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

Nakahara, K.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

Noebauer-Huhmann, I. M.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Osa, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

Peng, W.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

Potgieter, J.

J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
[Crossref]

Qin, C.

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

Robinson, P.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Roethke, M.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Schilling, D.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Schlemmer, H. P.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Schrotter, J.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

Seifabadi, R.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Shiozawa, H.

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

Singh, J.

J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
[Crossref]

Stenzl, A.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Su, H.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Tagliafico, A.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Tan, U. X.

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

Tanaka, T.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

Tokuda, J.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Trattnig, S.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Turkbey, B.

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Uematsu, Y.

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

Valis, T.

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

van Rijswijk, C.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Vanhoenacker, F.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Vengsarkar, A. M.

Vilanova, J. C.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Wagner, P.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Wang, A.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Wang, D.

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

Wang, J.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Wang, Q.

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

Wang, Z.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Weber, M. A.

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Werner, M.

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Wood, B.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Woodrum, D. A.

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

Xiang, S.

S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
[Crossref]

Xiang, X.

S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
[Crossref]

Xiao, H.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Xu, S.

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

Xu, W.

J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
[Crossref]

Yang, B.

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

Yang, Y.

K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.

Yip, M. C.

M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
[Crossref] [PubMed]

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

Yu, Q.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.

Yuen, S. G.

M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
[Crossref] [PubMed]

Zhao, W.

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

Zhao, Y.

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

Zhou, X.

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.

Fiber Optic Smart Structures and Skins IV (1)

W. D. Hogg, D. Janzen, T. Valis, and R. M. Measures, “Development of a fiber Fabry- Perot strain gauge,” Fiber Optic Smart Structures and Skins IV 1588, 300–307 (1991).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Yoshino, K. Kurosawa, K. Itoh, and T. Osa, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. 18(10), 1624–1633 (1982).
[Crossref]

M. Ishikawa, H. Shiozawa, K. Itaya, G. Hatakoshi, and Y. Uematsu, “Temperature dependence of the threshold current for InGaAlP visible laser diodes,” IEEE J. Quantum Electron. 27(1), 23–29 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photonics Technol. Lett. 12(7), 777–779 (2000).
[Crossref]

IEEE Sens. J. (1)

H. Su, I. I. Iordachita, J. Tokuda, N. Hata, X. Liu, R. Seifabadi, S. Xu, B. Wood, and G. S. Fischer, “Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review,” IEEE Sens. J. 17(7), 1952–1963 (2017).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. C. Yip, S. G. Yuen, and R. D. Howe, “A robust uniaxial force sensor for minimally invasive surgery,” IEEE Trans. Biomed. Eng. 57(5), 1008–1011 (2010).
[Crossref] [PubMed]

IEEE Trans. Robot. (1)

U. X. Tan, B. Yang, R. Gullapalli, and J. P. Desai, “Triaxial MRI-compatible fiber-optic force sensor,” IEEE Trans. Robot. 27(1), 65–74 (2011).
[Crossref] [PubMed]

IEEE/ASME Trans. Mechatron. (1)

S. B. Kesner and R. D. Howe, “Design principles for rapid prototyping forces sensors using 3-D printing,” IEEE/ASME Trans. Mechatron. PP(99), 1–5 (2011).
[Crossref] [PubMed]

Instrum. Sci. Technol. (1)

Q. Wang, C. Qin, D. Wang, and Y. Zhao, “Investigation on stability of extrinsic Fabry-Perot interferometric pressure sensors for high-temperature/high-pressure underground applications,” Instrum. Sci. Technol. 41(2), 143–153 (2013).
[Crossref]

International Journal of Biomechatronics and Biomedical Robotics (1)

J. Singh, J. Potgieter, and W. Xu, “Fibre optic force sensor for flexible bevel tip needles in minimally invasive surgeries,” International Journal of Biomechatronics and Biomedical Robotics 2(2/3), 135–140 (2013).
[Crossref]

J. Lightwave Technol. (1)

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19(10), 1445 (2001).
[Crossref]

J. Nucl. Med. (1)

L. Lindenberg, M. Ahlman, B. Turkbey, E. Mena, and P. Choyke, “Evaluation of prostate cancer with PET/MRI,” J. Nucl. Med. 57(3), 111S–116S (2016).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

X. Zhou, Q. Yu, W. Peng, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Simultaneous measurement of down-hole pressure and distributed temperature with a single fiber,” Meas. Sci. Technol. 23(8), 85–102 (2012).
[Crossref]

Opt. Lett. (1)

Optik (Stuttg.) (1)

S. Xiang, X. Xiang, and C. Feng, “Effects of temperature on laser diode ignition,” Optik (Stuttg.) 120(2), 85–88 (2009).
[Crossref]

Semin. Intervent. Radiol. (1)

D. A. Woodrum, K. R. Gorny, B. Greenwood, and L. A. Mynderse, “MRI-Guided Prostate Biopsy of Native and Recurrent Prostate Cancer,” Semin. Intervent. Radiol. 33(3), 196–205 (2016).
[Crossref] [PubMed]

Semin. Musculoskelet. Radiol. (1)

I. M. Noebauer-Huhmann, M. A. Weber, R. K. Lalam, S. Trattnig, K. Bohndorf, F. Vanhoenacker, A. Tagliafico, C. van Rijswijk, J. C. Vilanova, P. D. Afonso, M. Breitenseher, I. Beggs, P. Robinson, M. C. de Jonge, C. Krestan, and J. L. Bloem, “Soft tissue tumors in adults: ESSR-approved guidelines for diagnostic imaging,” Semin. Musculoskelet. Radiol. 19(5), 475–482 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Bremer, E. Lewis, G. Leen, B. Moss, S. Lochmann, I. Mueller, and J. Schrotter, “Fibre optic pressure and temperature sensor for geothermal wells,” Sensors (Basel) 2010, 538–541 (2010).

World J. Urol. (1)

M. Roethke, A. G. Anastasiadis, M. Lichy, M. Werner, P. Wagner, S. Kruck, C. D. Claussen, A. Stenzl, H. P. Schlemmer, and D. Schilling, “MRI-guided prostate biopsy detects clinically significant cancer: analysis of a cohort of 100 patients after previous negative TRUS biopsy,” World J. Urol. 30(2), 213–218 (2012).
[Crossref] [PubMed]

Other (5)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964).

S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors, Second Edition (CRC Press, 2008).

W. Shang, H. Su, G. Li, and G. S. Fischer, “Teleoperation system with hybrid pneumatic-piezoelectric actuation for MRI-guided needle insertion with haptic feedback,” in Intelligent Robots and Systems (IROS), IEEE/RSJ International Conference on, (IEEE, 2013), 4092–4098.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Springer Science & Business Media, 2013).

K. Chen, X. Zhou, Y. Yang, and Q. Yu, “A hybrid Raman/EFPI/FBG sensing system for distributed temperature and key-point pressure measurements,” in 2015 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, (2015), pp. 9620.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Working Principle of FPI Sensors.
Fig. 2
Fig. 2 FPI based force sensors examples with different fabrication methods.
Fig. 3
Fig. 3 Optical setup of the needle tip force sensing system.
Fig. 4
Fig. 4 The two micro-holes created on a borosilicate glass capillary housing by the laser cutting process.
Fig. 5
Fig. 5 Final design of the custom FPI based force sensor.
Fig. 6
Fig. 6 Sensor response with respect to the cavity length change (left) and a close-up plot between 7 and 10 µm (right). The desired fixation point was marked (solid dot) on the plot.
Fig. 7
Fig. 7 The experiment setup of continuous force feedback measurement during biopsy needle insertion into a prostate phantom under MRI (left) and into a beef tissue during benchtop experiment (right).
Fig. 8
Fig. 8 (a). The performance of the MPC temperature controller (b). The performance of the PID temperature controller (c). Overall stability of MPC temperature controller.
Fig. 9
Fig. 9 Applied force vs. custom FPI based force sensor response. The overall force range of the sensor was marked with dashed line.
Fig. 10
Fig. 10 Commercial force sensor response (on the left) and custom FPI based force sensor response (on the right) to the applied axial force.
Fig. 11
Fig. 11 Needle insertion into a beef tissue and a stiff foam.
Fig. 12
Fig. 12 FPI based force sensor embedded needle insertion into a commercially available prostate phantom under MRI (left), the force response of the sensor (right).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( Φ 1 Φ 2 )
I=2 I 0 (1+cosΦ)=4 I 0 cos 2 (Φ/2)
Φ=4πn L cavity /λ+ Φ 0
Δ L cavity =F(12μ) L gauge /Eπ( r o 2 r i 2 )

Metrics