Abstract

Waveguide numerical aperture restrictions and light-blocking elements are used to create a microfluidic cytometer with both illumination and two-parameter light scatter collection systems integrated on-chip. Good forward scatter coefficients of variation (9.7-18.3%) are achieved for polystyrene beads under a reasonably high flow rate (28 cm/s) using a greatly simplified optical system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Shapiro, Practical Flow Cytometry (Wiley, 2004).
  2. A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
    [CrossRef] [PubMed]
  3. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
    [CrossRef] [PubMed]
  4. A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
    [CrossRef] [PubMed]
  5. D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
    [CrossRef]
  6. N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
    [CrossRef] [PubMed]
  7. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [CrossRef] [PubMed]
  8. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
    [CrossRef]
  9. J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
    [CrossRef]
  10. J. Godin, V. Lien, and Y. Lo, “Integrated fluidic photonics for multi-parameter in-plane detection in microfluidic flow cytometry,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Montreal, Quebec, 2006), pp. 605–606.
  11. V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
    [CrossRef]
  12. A. Yen, Flow Cytometry: Advanced Research and Clinical Applications, 7–8 (CRC Press, 1989).
  13. D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [CrossRef]
  14. E. Mantz, “MFI Homepage,” http://www.umass.edu/microbio/mfi/
  15. H. B. Steen, “Light scattering measurement in an arc lamp-based flow cytometer,” Cytometry 11(2), 223–230 (1990).
    [CrossRef] [PubMed]
  16. S. Cho, J. Godin, C. Chen, F. Tsai, and Y. Lo, “Microfluidic photonic integrated circuits,” Proc. SPIE 7135, 713501 (2008).
  17. C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
    [CrossRef] [PubMed]

2009 (3)

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

2006 (1)

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

2004 (3)

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
[CrossRef]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

2003 (2)

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

1999 (1)

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

1998 (1)

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

1990 (1)

H. B. Steen, “Light scattering measurement in an arc lamp-based flow cytometer,” Cytometry 11(2), 223–230 (1990).
[CrossRef] [PubMed]

Anderson, G. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Berdichevsky, Y.

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
[CrossRef]

Brattke, K.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Chen, C. H.

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Cho, S. H.

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Culbertson, C.

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

Duffy, D.

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Erickson, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Erten, A.

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Frankowski, M.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Friis, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Godin, J.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Golden, J. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Goranovic, G.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Hilliard, L. R.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Howell, P. B.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Jacobson, S.

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

Kim, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Koyama, R.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Kummrow, A.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Larsen, U. D.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Lee, L. P.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Lien, V.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
[CrossRef]

Ligler, F. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Lo, Y.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
[CrossRef]

Lo, Y. H.

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Manz, A.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

McDonald, J.

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Nasir, M.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Neukammer, J.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Pamme, N.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Poulsen, C. R.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Ramsey, J.

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

Schmidt, M.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Schrum, D. P.

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

Schueller, O.

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

Seo, J.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Steen, H. B.

H. B. Steen, “Light scattering measurement in an arc lamp-based flow cytometer,” Cytometry 11(2), 223–230 (1990).
[CrossRef] [PubMed]

Telleman, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Theisen, J.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Tsai, F.

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Tuchscheerer, A.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Whitesides, G. M.

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Yildirim, H.

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. P. Schrum, C. Culbertson, S. Jacobson, and J. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 71(19), 4173–4177 (1999).
[CrossRef]

D. Duffy, J. McDonald, O. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Biomed. Microdevices (1)

C. H. Chen, S. H. Cho, F. Tsai, A. Erten, and Y. H. Lo, “Microfluidic cell sorter with integrated piezoelectric actuator,” Biomed. Microdevices 11(6), 1223–1231 (2009).
[CrossRef] [PubMed]

Cytometry (1)

H. B. Steen, “Light scattering measurement in an arc lamp-based flow cytometer,” Cytometry 11(2), 223–230 (1990).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

V. Lien, Y. Berdichevsky, and Y. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16(6), 1525–1527 (2004).
[CrossRef]

Lab Chip (5)

A. Kummrow, J. Theisen, M. Frankowski, A. Tuchscheerer, H. Yildirim, K. Brattke, M. Schmidt, and J. Neukammer, “Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining,” Lab Chip 9(7), 972–981 (2009).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Other (5)

J. Godin, V. Lien, and Y. Lo, “Integrated fluidic photonics for multi-parameter in-plane detection in microfluidic flow cytometry,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Montreal, Quebec, 2006), pp. 605–606.

A. Yen, Flow Cytometry: Advanced Research and Clinical Applications, 7–8 (CRC Press, 1989).

E. Mantz, “MFI Homepage,” http://www.umass.edu/microbio/mfi/

S. Cho, J. Godin, C. Chen, F. Tsai, and Y. Lo, “Microfluidic photonic integrated circuits,” Proc. SPIE 7135, 713501 (2008).

H. M. Shapiro, Practical Flow Cytometry (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Microscope image of the microfluidic device. (b) Scale schematic of device showing light scatter (‘FSC’ and ‘SSC’) collected by waveguides from interrogation centers (two black circles in channel). Note that light originating from between these centers is incident on an angled facet (see arrows), resulting in large reflection or refraction losses. After traversing the fluidic channel, the illumination beam is guided off the chip by the beam dump, which by nature will collect the ‘extinction’ signal (EXT), a dip in intensity as samples pass. c) Typical fork-style lateral hydrodynamic focusing and (d) chevron-based vertical focusing are used to confine sample flow.

Fig. 2
Fig. 2

(left) Close-up of a signals from a single bead (scaled to display together), showing a slight time delay between the FSC peak and the SSC peak. (right) Signals recorded over two seconds of data show a large number of beads passing through the device.

Fig. 3
Fig. 3

Data plots for a sample of 5, 10, and 15 μm beads from both our device (left column) and the commercial device (right column), including FSC area histograms (a,b) and FSC-SSC scatter plots (c,d). The FSC separation on the microfluidic device is quite clear.

Tables (2)

Tables Icon

Table 1 Number of Beads Analyzed

Tables Icon

Table 2 Light Scatter Intensity CVs

Metrics