Abstract

Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
    [PubMed]
  3. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
    [CrossRef] [PubMed]
  4. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
    [CrossRef] [PubMed]
  5. G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
    [CrossRef] [PubMed]
  6. V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
    [CrossRef] [PubMed]
  7. F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
    [CrossRef] [PubMed]
  8. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
    [CrossRef] [PubMed]
  9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [CrossRef]
  10. H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
    [CrossRef] [PubMed]
  11. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
    [CrossRef] [PubMed]
  12. D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
    [CrossRef] [PubMed]
  13. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
    [CrossRef] [PubMed]
  14. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
    [CrossRef] [PubMed]
  15. G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
    [CrossRef] [PubMed]
  16. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
    [CrossRef] [PubMed]
  17. G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
    [CrossRef] [PubMed]
  18. M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
    [CrossRef] [PubMed]
  19. O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
    [CrossRef] [PubMed]
  20. O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
    [CrossRef] [PubMed]
  21. M. Haeker, M. Abramoff, R. Kardon, and M. Sonka, “Segmentation of the Surfaces of the Retinal Layer from OCT Images,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006, 800–807 (2006).
  22. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [CrossRef] [PubMed]
  23. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
    [CrossRef] [PubMed]
  24. D. Tolliver, I. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted Segmentation of Multiple Retinal Layers via Spectral Rounding,” in ARVO 2008 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2008), Poster.
  25. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
    [CrossRef] [PubMed]
  26. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach,” in MICCAI ’09: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–656 (Springer-Verlag, Berlin, Heidelberg, 2009).
  27. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
    [CrossRef] [PubMed]
  28. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
  29. K. Vermeer, J. van der Schoot, J. de Boer, and H. Lemij, “Automated Retinal and NFL Segmentation in OCT Volume Scans by Pixel Classification,” in ARVO 2010 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2010), Poster.
  30. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [CrossRef] [PubMed]
  31. A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
    [CrossRef] [PubMed]
  32. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
    [CrossRef] [PubMed]
  33. S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
    [CrossRef] [PubMed]
  34. S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
    [CrossRef] [PubMed]
  35. D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).
  36. C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996).
    [CrossRef]
  37. T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999).
    [CrossRef]
  38. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  39. D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
    [CrossRef] [PubMed]
  40. D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
    [CrossRef] [PubMed]

2010

V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

2009

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
[CrossRef] [PubMed]

2008

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

2007

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
[CrossRef] [PubMed]

2006

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

2005

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[CrossRef] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

2004

G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
[CrossRef] [PubMed]

2003

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

2001

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef] [PubMed]

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999).
[CrossRef]

1996

C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996).
[CrossRef]

1992

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

A. I. for Glaucoma Study Group,

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

Abramoff, M. D.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Abràmoff, M. D.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

Ahlers, C.

Akkin, T.

Arthur, S. N.

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Aydin, A.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Baleanu, D.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

Baroni, M.

M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
[CrossRef] [PubMed]

Baumann, B.

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

Bizheva, K.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef] [PubMed]

Broman, A. T.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[CrossRef] [PubMed]

Cabrera Fernández, D.

Cantor, L. B.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Cense, B.

Chan, R.

Chan, T.

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chiu, S. J.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Choi, S.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Chopra, V.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

Clausi, D. A.

Collins, A. T.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Correnti, A.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

de Boer, J.

Dolejsi, M.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

Drexler, W.

Dustin, L.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

Farsiu, S.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Fercher, A.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fernández, D. C.

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

Ferreras, A.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fortunato, P.

M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
[CrossRef] [PubMed]

Fortune, B.

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Franke, T.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Fujimoto, J. G.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fuller, A. R.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Garvin, M. K.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Geitzenauer, W.

Gilboa, G.

G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
[CrossRef] [PubMed]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guedes, V.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Hamann, B.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Hariprasad, R.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hertzmark, E.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Hitzenberger, C.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Hitzenberger, C. K.

Hofer, B.

Honrubia, F. M.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Hood, D. C.

D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
[CrossRef] [PubMed]

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Horn, F. K.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

Huang, D.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ishikawa, H.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

Izatt, J. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Joeres, S.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Joo, C.

Juenemann, A.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

Juenemann, A. G.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Kajic, V.

Kaluzny, J. J.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Kardon, R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Kay, K. Y.

Klein, B. E.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Klein, R.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Kruse, F. E.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

La Torre, A.

M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
[CrossRef] [PubMed]

Laemmer, R.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Lai, E.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Larrosa, J. M.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Lasser, T.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Lederer, D.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Lee, K.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

Li, G.

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

Li, X. T.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Liebmann, J. M.

D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
[CrossRef] [PubMed]

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lu, A. T.-H.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

Mancini, R.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Mardin, C. Y.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Marshall, D.

Martone, J.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Mattox, C.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Mayoral, F.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Menage, M. J.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Michels, S.

Mishra, A.

Mujat, M.

Mulet, P.

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999).
[CrossRef]

Nicholas, P.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Noecker, R. J.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

Oman, M. E.

C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996).
[CrossRef]

Pakter, H. M.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Park, B.

Paunescu, L. A.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Pedut-Kloizman, T.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Piette, S.

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

Pircher, M.

Polo, V.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Povazay, B.

Price, L. L.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Pueyo, V.

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Quellec, G.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

Quigley, H. A.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[CrossRef] [PubMed]

Raza, A. S.

Ritch, R.

D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
[CrossRef] [PubMed]

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef] [PubMed]

Roessler, C. W.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Romano, P.

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Romano, P. W.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

Rosin, P. L.

Russell, S. R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Sadda, S. R.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Salant, J. A.

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Salinas, H. M.

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

Sandler, S. F.

Schmidt-Erfurth, U.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Schuman, J. S.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shahidi, M.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[CrossRef] [PubMed]

Sikorski, B.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Sochen, N. A.

G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
[CrossRef] [PubMed]

Somfai, G. M.

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

Sonka, M.

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Sponsel, W. E.

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

Srinivasan, V. J.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Stark, P. C.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Stein, D. M.

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Tan, O.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

Tornow, R. P.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Toth, C. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

Tsong, J. W.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

Updike, P.

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Updike, P. G.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

Varma, R.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

Velazquez, L.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Vogel, C. R.

C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996).
[CrossRef]

Voskanian, S.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Walsh, A. C.

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

Wang, Z.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[CrossRef] [PubMed]

Werner, J. S.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Wiley, D. F.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Wollstein, G.

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

Wong, A.

Wu, X.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Wu, Z.

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Xin, D.

Xing, D.

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Zawadzki, R. J.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Zeevi, Y. Y.

G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
[CrossRef] [PubMed]

Zelkha, R.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005).
[CrossRef] [PubMed]

Arch. Ophthalmol.

G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005).
[CrossRef] [PubMed]

Br. J. Ophthalmol.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[CrossRef] [PubMed]

D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol.

H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004).
[CrossRef] [PubMed]

IEEE Trans. Vis. Comput. Graph.

A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS).
[CrossRef] [PubMed]

S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS).
[CrossRef] [PubMed]

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007).
[CrossRef] [PubMed]

J. Glaucoma

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008).
[CrossRef] [PubMed]

Med. Eng. Phys.

M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007).
[CrossRef] [PubMed]

Ophthalmologica

V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009).
[CrossRef] [PubMed]

Ophthalmology

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[CrossRef] [PubMed]

B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992).
[PubMed]

O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008).
[CrossRef] [PubMed]

O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009).
[CrossRef] [PubMed]

Opt. Express

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
[CrossRef] [PubMed]

V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
[CrossRef] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[CrossRef] [PubMed]

D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

SIAM J. Numer. Anal.

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999).
[CrossRef]

SIAM J. Sci. Comput.

C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996).
[CrossRef]

Other

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).

K. Vermeer, J. van der Schoot, J. de Boer, and H. Lemij, “Automated Retinal and NFL Segmentation in OCT Volume Scans by Pixel Classification,” in ARVO 2010 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2010), Poster.

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach,” in MICCAI ’09: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–656 (Springer-Verlag, Berlin, Heidelberg, 2009).

D. Tolliver, I. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted Segmentation of Multiple Retinal Layers via Spectral Rounding,” in ARVO 2008 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2008), Poster.

M. Haeker, M. Abramoff, R. Kardon, and M. Sonka, “Segmentation of the Surfaces of the Retinal Layer from OCT Images,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006, 800–807 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Example circular B-Scan of a left eye with coordinate system denominations. Right eye denominations and scan pattern are equivalent and follow the common rules for the mapping between left and right eye. (a) OCT B-Scan. The retinal layers relevant for this work are marked: The retinal nerve fiber layer (RNFL) and retinal pigment epithelium (RPE). (b) SLO image captured by the Spectralis HRA+OCT during the same scanning process. The circular scan pattern position and its direction corresponding to the R-direction in the images is marked. The quadrant borders on the SLO image scan position and on the OCT scan are shown with green lines. The quadrants are: Temporal (T), Superior (S), Nasal (N), Inferior (I).

Fig. 2.
Fig. 2.

Quality index (QI) distribution of all 204 circular B-Scans in our dataset. A high QI value denotes a good quality image. 93.6% of the images have a QI above 0.6.

Fig. 3.
Fig. 3.

Algorithm overview. Input and output data are marked in red. The retina detection is colored in blue, the outer nerve fiber layer detection in yellow. Important steps are marked with bold rectangles.

Fig. 4.
Fig. 4.

Processing steps of the nerve fiber layer segmentation shown on an example scan of a glaucomatous eye (QI = 0.74) with local nerve fiber layer loss. (a) Separating line in the outer nuclear layer detected. Inner and outer segment of the retina are separately [0 : 1] scaled. ISG: Inner segment of the retina. OSG: Outer segment of the retina. (b) Inner nerve fiber layer boundary and retinal pigment epithelium detected. A-Scans aligned so that the retinal pigment epithelium forms a constant even line. The image intensities are changed back to the original ones. (c) Image denoised by complex diffusion. A maximum of four greatest contrast drops in the inner segment of the retina is detected. (d) Initial segmentation of the outer nerve fiber layer boundary formed by heuristic decisions. (e) Result after energy-minimization segmentation described in Section 2.3. The resulting mean RNFL thickness is 73.5µm.

Fig. 5.
Fig. 5.

(a) Intensity plot along an A-Scan and (b) its corresponding derivative. The A-scan # 315 of the denoised example image in Fig. 4 (c) is shown. It is cropped to the retina region. The intensity rise at the ILM, as well as the intensity drops at the ONFL, at the inner plexiform layer (IPL)/inner nuclear layer (INL) border and the outer plexiform layer (OPL)/outer nuclear layer (ONL) border are marked. The separation line between the inner and outer segment of the retina, as used in this work, is also shown.

Fig. 6.
Fig. 6.

Example results. (a) Normal eye. QI = 0.65. Automatically measured mean retinal nerve fiber layer thickness (mRNFLi ) = 111.47 µm (b) Glaucomatous eye. QI = 0.70. mRNFLi = 62.55 µm (c) Glaucomatous eye. QI = 0.67. mRNFLi = 42.16 µm (d) Normal eye. Very low image quality. QI = 0.54. mRNFLi = 111.90 µm. White arrows indicate segmentation errors.

Fig. 7.
Fig. 7.

Manually corrected segmentation from one reviewer (blue). The red and yellow lines indicate a differing correction from the other two reviewers.

Fig. 8.
Fig. 8.

Mean absolute observer difference (MAOD(r): blue) at A-Scan position r. Mean gold standard retina thickness (mRNFLGS (r): green), scaled by a factor of 1 20 . Blood vessel distribution (BVD(r): red). Herefore values are given on the right side and correspond to the percentage of images where a blood vessel is detected at the A-Scan position r. Correlation between MAOD(r) and BVD(r): 0.86, correlation between BVD(r) and mRNFLGS (r): 0.87, correlation between mRNFLGS (r) and MAOD(r): 0.84.

Fig. 9.
Fig. 9.

Mean absolute difference to gold standard per A-Scan (MADG(r): blue) computed over the whole circular B-Scan dataset. Blood vessel distribution (BVD(r): red). Values herefore are given on the right side and correspond to the percentage of images where a blood vessel is detected at the certain A-Scan position r. Correlation between MADG(r) and BVD(r): 0.84

Fig. 10.
Fig. 10.

Mean absolute observer difference (MAOD(r): blue) compared to mean absolute difference to gold standard per A-Scan (MADG(r): green) over the entire circular B-Scan data set. The correlation between the plots is 0.93

Fig. 11.
Fig. 11.

(a) Circular B-Scan of a glaucoma patient. (b) Circular B-Scan interpolated out of a volume scan of the same patient. Automated segmentation results are shown. The white arrows indicate regions with low image quality due to lower data density in the interpolation. The corresponding RNFL thickness plots are shown in Fig. 12.

Fig. 12.
Fig. 12.

Retinal nerve fiber layer thickness (RNFL) from the automated segmentation. Circular B-Scan of a glaucoma patient: green, Mean thickness = 58.0 µm. Circular B-Scan interpolated out of a volume scan of the same patient: blue, Mean thickness = 55.1 µm. The correlation between both plots is 0.82, the thickness difference of the means is 2.9 µm.

Fig. 13.
Fig. 13.

Thickness maps overlaid with SLO image. (a) Normal subject. (b) Glaucoma patient with local RNFL loss. The RNFL thickness is visualized by a pseudo color scale, ranging from blue (220µm) over green to red (0µm). The used color scale is shown on the right.

Tables (7)

Tables Icon

Table 1. Agreement between the three manual corrections. Agreement in this work denotes the percentage of images where the mean absolute difference over all A-Scans lies below a certain threshold (see Section 2.5).

Tables Icon

Table 2. Number of images (#Img) in each group and the mean absolute observer differences (MAOD), averaged over all scans in the respective group (± standard deviation). The MAOD is also shown with respect to the gold standard RNFL thickness. The numbers are calculated for the complete circular B-Scan dataset (All), the glaucoma patients and normal subjects, and the images of lowest quality (QI < 0.69) and high quality (QI ≥ 0.69).

Tables Icon

Table 3. Number of images (#Img) in each group and the average evaluation results (± standard deviation). The mean RNFL thickness (mRNFL), the mean difference to the gold standard (MDG), mean absolute difference to the GS (MADG) and the MADG in relation to the mean RNFL thickness computed out of the GS (given in %) are shown. The numbers are calculated for the complete circular B-Scan dataset (All), the glaucoma patients (Gl.) and normal subjects (Nor.), and the images of lowest quality (QI < 0.69) and high quality (QI ≥ 0.69).

Tables Icon

Table 4. Agreement between the gold standard (per A-Scan median of the 3 reviewers) and the automated segmentation. Agreement in this work denominates the percentage of images where the mean absolute difference per A-Scan lies below a certain threshold (see 2.5). The agreement is calculated for the complete circular B-Scan dataset (All), the glaucoma patients (72 images) and normal subjects (169 images) and the images of lowest quality (72 images, QI < 0.69) and high quality (169 images, QI ≥ 0.69).

Tables Icon

Table 5. Table of abbreviations (top) and symbols (bottom) in alphabetical order.

Tables Icon

Table 6. Overview (first part) over published research in the field of retina and retinal nerve fiber layer (RNFL) segmentation on OCT data. Abbreviations see caption table 7.

Tables Icon

Table 7. Overview (second part) over published research in the field of retina and retinal nerve fiber layer (RNFL) segmentation on OCT data. Abbreviations: Segmentation (seg.), normal subject (NS), ocular hypertension patient (OHP), glaucoma patient (GP), papilledema patient (PP), outer photoreceptor layer (OPL), age related macula degenration (AMD), diabetic macula edema (DME), optic neuropathy patient (ONP), perimetric glaucoma patient (PGP), preperimetric glaucoma patient (PPGP). The table does not claim to be complete.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

QI = 1 # N I ( z , r ) = 0 # N ;
σ CD = 1 3 std ( I I med filt ) ;
PS ( r ) = Σ z ISG I ( z , r ) Σ z OSG I ( z , r )
E ( r ) = G ( z , r ) + α N ( r ) + β D ( r ) ;
z min ( E ( r ) ) r ONFL ( r ) .
N ( r ) = ONFL ( r 1 ) ONFL ( r ) + ONFL ( r + 1 ) ONFL ( r ) .
D ( r ) = ONFL ( r ) ( Σ r BVR ONFL ( r ) ) # N r BVR
RNFL d ( r ) = ( ONFL d ( r ) ILM d ( r ) ) * Scale Z
MAOD i = 1 768 Σ r = 1 768 1 3 ( RNFL Obs 1 , i ( r ) RNFL Obs 2 , i ( r )
+ RNFL Obs 2 , i ( r ) RNFL Obs 3 , i ( r )
+ RNFL Obs 1 , i ( r ) RNFL Obs 3 , i ( r ) )
Agreement = # Img MAOD i < t # Img
MAOD ( r ) = 1 # Img Σ i = 1 # Img 1 3 ( RNFL Obs 1 , i ( r ) RNFL Obs 2 , i ( r )
+ RNFL Obs 2 , i ( r ) RNFL Obs 3 , i ( r )
+ RNFL Obs 1 , i ( r ) RNFL Obs 3 , i ( r ) )
Diff i ( r ) = RNFL GS , i ( r ) RNFL autom , i ( r )
m RNFL i = 1 768 Σ r = 1 768 RNFL i ( r )
MDG i = 1 768 Σ r = 1 768 Diff i ( r )
MADG i = 1 768 Σ r = 1 768 Diff i ( r )
MADG ( r ) = 1 # Img Σ i = 1 # Img Diff i ( r )

Metrics