Abstract

We quantify the posterior surface distortions in optical coherence tomography (OCT) images of isolated crystalline lenses. The posterior radius of curvature and asphericity obtained from OCT images acquired with the beam incident first on the anterior, and then the posterior, surface were compared. The results were compared with predictions of a ray-tracing model which includes the index gradient. The results show that the error in the radius of curvature is within the measurement reproducibility and that it can be corrected by assuming a uniform refractive index. However, accurate asphericity values require a correction algorithm that takes into account the gradient.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989).
    [CrossRef] [PubMed]
  2. R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
    [CrossRef] [PubMed]
  3. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
    [CrossRef] [PubMed]
  4. P. J. Sands, “Third-order aberrations of inhomogeneous lenses,” J. Opt. Soc. Am. 60(11), 1436–1443 (1970).
    [CrossRef]
  5. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
    [CrossRef] [PubMed]
  6. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  7. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
    [CrossRef] [PubMed]
  8. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [CrossRef] [PubMed]
  9. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
    [CrossRef]
  10. S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  11. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  12. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
    [CrossRef] [PubMed]
  13. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [PubMed]
  14. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  15. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
    [CrossRef] [PubMed]
  16. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  17. R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
    [PubMed]
  18. R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
    [CrossRef] [PubMed]
  19. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
    [CrossRef] [PubMed]
  20. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
    [CrossRef] [PubMed]
  21. D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
    [CrossRef] [PubMed]
  22. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [CrossRef] [PubMed]
  23. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [CrossRef] [PubMed]
  24. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27(7), 1541–1548 (2010).
    [CrossRef] [PubMed]
  25. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21(6), 984–987 (1982).
    [CrossRef] [PubMed]

2010

2009

2008

R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

2007

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[CrossRef] [PubMed]

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
[CrossRef] [PubMed]

2006

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[CrossRef] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

2005

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

2004

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

2002

2001

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

1989

B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989).
[CrossRef] [PubMed]

1982

1970

Amelinckx, A.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Arrieta, E.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Ashman, R.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Atchison, D. A.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Augusteyn, R. C.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
[CrossRef] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Bedggood, P.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Borja, D.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Chan, D. Y.

B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989).
[CrossRef] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Daaboul, M.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Dainty, C.

Davies, L. N.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[CrossRef] [PubMed]

de Castro, A.

Denham, D. B.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Dorronsoro, C.

Dubbelman, M.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Dunne, M. C. M.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[CrossRef] [PubMed]

Fernandez, V.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Gambra, E.

Ghatak, A. K.

Goncharov, A. V.

Gora, M.

Gorczynska, I.

Grulkowski, I.

Gupta, P. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Hamaoui, M.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Ho, A.

R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Izatt, J. A.

Jain, R.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Jones, C. E.

R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

Kumar, D. V.

Kuo, A. N.

Manns, F.

R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
[CrossRef] [PubMed]

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Marcos, S.

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Metha, A.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Ortiz, S.

Parel, J. M.

R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Parel, J.-M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Pascual, D.

Patel, H. S.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Pérez-Escudero, A.

Pierscionek, B. K.

B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989).
[CrossRef] [PubMed]

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Pope, J. M.

R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Radhakrishnan, S.

Rao, K. D.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Remon, L.

Rollins, A. M.

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[CrossRef] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[CrossRef] [PubMed]

Rosen, A. M.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Sandadi, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Sands, P. J.

Sharma, A.

Siedlecki, D.

Smith, G.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Suresh, M. K.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Szkulmowski, M.

Szlag, D.

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Urs, R.

R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[CrossRef] [PubMed]

Verma, Y.

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Westphal, V.

Wojtkowski, M.

Wolffsohn, J. S.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[CrossRef] [PubMed]

Zhao, M.

Ziebarth, N.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

Ziebarth, N. M.

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Zipper, S.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007).
[CrossRef]

Clin. Exp. Optom.

R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008).
[CrossRef] [PubMed]

Exp. Eye Res.

F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refract. Surg.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[CrossRef] [PubMed]

J. Vis.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006).
[CrossRef] [PubMed]

Mol. Vis.

R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006).
[PubMed]

Opt. Express

Optom. Vis. Sci.

B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Vision Res.

R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010).
[CrossRef] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical and geometric location of the lens surfaces in OCT images. Left: Raw image. Right: Image corrected for the refractive index using Eq. (1).

Fig. 2
Fig. 2

Schematic diagram of the methods used in the simulations. In Simulation 1 (upper panel) the posterior surface of the lens obtained with OCT is simulated and compared to the measured distorted posterior lens surface, assuming knowledge of the anterior surface (obtained from OCT) and either the measured average refractive index, the best homogeneous index (producing best match with experimental data) and a GRIN distribution in the lens. The figure on the upper right shows the actual lens shape in blue and an example of the simulated distorted shape in red. In simulation 2 (lower panel) distortion correction algorithms are applied to reconstruct the posterior lens shape. The reconstructed shape is compared to the actual geometry obtained by OCT imaging of the flipped-over lens. The algorithm is applied for a homogeneous refractive index and GRIN. The figure in the lower right panel shows the actual lens shape in blue, the distorted lens shape in red, and the reconstructed posterior lens shape in green.

Fig. 3
Fig. 3

Raw (top) and rescaled (bottom) OCT images of a 49 year old human crystalline. Left: Anterior-up OCT image; Right: Posterior-up OCT image. Tilt errors are corrected during post-processing before calculating the radius of curvature and asphericity.

Fig. 4
Fig. 4

Bland-Altman analysis of the distorted versus undistorted anterior surface. Top graphs: Radius of curvature; Bottom graphs: Asphericity. The graphs on the left show the distorted parameter (vertical axis) versus the undistorted parameter (horizontal axis). The diagonal is the 1:1 line (perfect correlation). The graphs on the right show for each lens the difference between the distorted and undistorted parameters for each eye versus the average of the two values (mean difference plots). The central horizontal line corresponds to the mean difference. The top and bottom lines correspond to the 95% confidence intervals (+/−2SD from the mean).

Fig. 5
Fig. 5

Bland-Altman analysis of the distorted versus undistorted posterior surface. Top graphs: Radius of curvature; Bottom graphs: Asphericity. The graphs on the left show the distorted parameter (vertical axis) versus the undistorted parameter (horizontal axis). The diagonal is the 1:1 line (perfect correlation). The graphs on the right show for each lens the difference between the distorted and undistorted parameters for each eye versus the average of the two values (mean difference plots). The central horizontal line corresponds to the mean difference. The top and bottom lines correspond to the 95% confidence intervals (+/−2SD from the mean).

Fig. 6
Fig. 6

Simulation results for a lens from a 6 year-old donor. a. Comparison of the actual measured distorted posterior lens contour (experimental shape, in green) with the posterior contour simulated using the three different refractive index models. b. Difference between experimental and simulated distorted posterior surfaces. Average and best homogenous refractive index are hardly distinguishable. The best agreement with the experimental shape is found for the GRIN model.

Tables (2)

Tables Icon

Table 1 Measured and simulated distorted posterior surface parameters

Tables Icon

Table 2 Nominal and reconstructed posterior surface parameters. Assuming a refractive index of 1.373 for the lens surface and 1.336 for aqueous, the posterior surface powers are 10.1D (nominal), 9.0D (average index), 10.1D (homogeneous index), 10.3D (GRIN)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z 1 ( x ) = d 1 ( x ) n D M E M              z 2 ( x ) = z 1 ( x ) + d 2 ( x ) d 1 ( x ) n L ( x )

Metrics