Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).

[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).

[PubMed]

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009).

[PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

J. Lee and L. Greengard, “The type 3 nonuniform FFT and its application,” J. Comput. Phys. 206(iss. 1), 1–5 (2005).

L. Greengard and J. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

S. De Francesco and A. M. F. da Silva, “Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE 5370, 666–677 (2004).

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).

[PubMed]

A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophys. 64, 539–551 (1999).

Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).

A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).

E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Med. Imaging 7(3), 213–217 (1988).

[PubMed]

H. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–516 (1978).

H. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–516 (1978).

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).

[PubMed]

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).

[PubMed]

S. De Francesco and A. M. F. da Silva, “Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE 5370, 666–677 (2004).

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

S. De Francesco and A. M. F. da Silva, “Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE 5370, 666–677 (2004).

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).

[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).

[PubMed]

A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophys. 64, 539–551 (1999).

A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).

J. Lee and L. Greengard, “The type 3 nonuniform FFT and its application,” J. Comput. Phys. 206(iss. 1), 1–5 (2005).

L. Greengard and J. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).

H. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–516 (1978).

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

J. Lee and L. Greengard, “The type 3 nonuniform FFT and its application,” J. Comput. Phys. 206(iss. 1), 1–5 (2005).

L. Greengard and J. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).

E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Med. Imaging 7(3), 213–217 (1988).

[PubMed]

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).

Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).

G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).

[PubMed]

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophys. 64, 539–551 (1999).

Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).

J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).

[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophys. 64, 539–551 (1999).

H. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–516 (1978).

A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004).

[PubMed]

Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).

M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002).

[PubMed]

E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Med. Imaging 7(3), 213–217 (1988).

[PubMed]

J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).

J. Lee and L. Greengard, “The type 3 nonuniform FFT and its application,” J. Comput. Phys. 206(iss. 1), 1–5 (2005).

G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001).

[PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).

[PubMed]

M. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).

[PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).

[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009).

[PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).

[PubMed]

Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).

[PubMed]

S. De Francesco and A. M. F. da Silva, “Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE 5370, 666–677 (2004).

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).

[PubMed]

A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).

L. Greengard and J. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).

D. Potts, G. Steidl, and M. Tasche, “Fast Fourier transforms for nonequispaced data: a tutorial,” in Modern Sampling Theory: Mathematics and Applications, J.J.Benedetto and P.Ferreira, eds. (Springer, 2001), Chap. 12, pp. 249–274.

P. Thevenaz, T. Blu, and M. Unser, Handbook of Medical Imaging (Academic Press, 2000), Chap. 25.

M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 1381–1384.

OpenMP Architecture Review Board, “The OpenMP API specification for parallel programming,” http://www.openmp.org/ .