Abstract

Diabetes is an insidious disease that afflicts millions of people worldwide and typically requires the person with the disease to monitor their blood sugar level via finger or forearm sticks multiple times daily. Therefore, the ability to noninvasively measure glucose would be a significant advancement for the diabetic community. The use of optically polarized light passed through the anterior chamber of the eye is one proposed noninvasive approach for glucose monitoring. However, the birefringence of the cornea and the difficulty in coupling the light across the eye have been major drawbacks toward realizing this approach. A dual wavelength optical polarimetric approach has been proposed as a means to potentially overcome the birefringence noise but has never been fully characterized. Therefore, in this paper an optical model has been developed along with experiments performed on New Zealand White rabbit eyes for characterizing the light path and corneal birefringence at two different wavelengths as they are passed through the anterior chamber of the eye. The results show that, without index matching, it is possible to couple the light in and out of the eye but only across a very limited range otherwise the light does not come back out of the eye. It was also shown that there is potential to use a dual wavelength approach to accommodate the birefringence noise of the cornea in the presence of eye motion. These results will be used to help guide the final design of the polarimetric system for use in noninvasive monitoring of glucose in vivo.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
    [CrossRef] [PubMed]
  2. K. M. Katika and L. Pilon, “Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence,” Appl. Opt. 46(16), 3359–3368 (2007).
    [CrossRef] [PubMed]
  3. J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
    [CrossRef]
  4. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
    [CrossRef] [PubMed]
  5. Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
    [CrossRef] [PubMed]
  6. L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
    [CrossRef] [PubMed]
  7. J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
    [CrossRef] [PubMed]
  8. A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
    [CrossRef] [PubMed]
  9. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
    [CrossRef] [PubMed]
  10. V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
    [PubMed]
  11. V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
    [CrossRef] [PubMed]
  12. B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
    [CrossRef] [PubMed]
  13. W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
    [CrossRef] [PubMed]
  14. G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
    [CrossRef] [PubMed]
  15. M. J. Goetz, Jr., “Microdegree Polarimetry for Glucose Detection,” M.S. Thesis, University of Connecticut, Storrs, CT 06269 (1992).
  16. T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
    [CrossRef]
  17. B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
    [CrossRef] [PubMed]
  18. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
    [CrossRef] [PubMed]
  19. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37(16), 3553–3557 (1998).
    [CrossRef] [PubMed]
  20. R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
    [CrossRef] [PubMed]
  21. R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
    [CrossRef] [PubMed]
  22. G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
    [CrossRef] [PubMed]
  23. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics / Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1998-BTuC1
  24. R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
    [CrossRef] [PubMed]
  25. V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
    [CrossRef]
  26. B. D. Cameron, “The application of polarized light to biomedical diagnostics and monitoring,” Ph.D. Dissertation, Texas A&M University, College Station, TX 77843 (2000).
  27. S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).
  28. B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
    [CrossRef] [PubMed]
  29. E. Hecht, Optics (Addison Wesley, Reading, MA, 2001).
  30. D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, “Numerical modeling of the cornea’s lamellar structure and birefringence properties,” J. Opt. Soc. Am. A 12(7), 1425–1438 (1995).
    [CrossRef] [PubMed]
  31. R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
    [CrossRef] [PubMed]
  32. M. Born, and E. Wolf, “Form Birefringence,” in Principles of Optics (Cambridge University Press, Cambridge, UK, 1998).
  33. D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
    [CrossRef]
  34. G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
    [CrossRef] [PubMed]
  35. J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
    [CrossRef] [PubMed]
  36. C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
    [PubMed]
  37. A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
    [CrossRef] [PubMed]
  38. A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).
  39. G. J. Van Blokland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4(1), 82–90 (1987).
    [CrossRef] [PubMed]
  40. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
    [PubMed]
  41. R. W. Knighton, X.-R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008).
    [CrossRef] [PubMed]
  42. L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
    [CrossRef] [PubMed]
  43. B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
    [CrossRef] [PubMed]
  44. B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
    [CrossRef] [PubMed]
  45. D. Atchison, and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, UK, 2000).
  46. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  47. D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
    [CrossRef] [PubMed]
  48. E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
    [CrossRef]
  49. K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
  50. T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
    [CrossRef] [PubMed]

2010 (2)

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[CrossRef] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[CrossRef] [PubMed]

2008 (2)

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

R. W. Knighton, X.-R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008).
[CrossRef] [PubMed]

2007 (3)

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

K. M. Katika and L. Pilon, “Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence,” Appl. Opt. 46(16), 3359–3368 (2007).
[CrossRef] [PubMed]

2006 (3)

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]

2005 (2)

R. A. Farrell, D. Rouseff, and R. L. McCally, “Propagation of polarized light through two- and three-layer anisotropic stacks,” J. Opt. Soc. Am. A 22(9), 1981–1992 (2005).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

2004 (3)

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[CrossRef] [PubMed]

E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[CrossRef]

2003 (3)

J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[CrossRef] [PubMed]

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

2002 (3)

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]

2001 (2)

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

2000 (2)

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[CrossRef] [PubMed]

1999 (1)

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (3)

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[CrossRef]

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef] [PubMed]

1996 (1)

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

1992 (1)

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[CrossRef] [PubMed]

1990 (1)

D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[CrossRef] [PubMed]

1987 (1)

1982 (2)

B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[CrossRef] [PubMed]

1981 (1)

L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[CrossRef] [PubMed]

1975 (1)

T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[CrossRef] [PubMed]

1966 (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

1953 (1)

A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).

1950 (1)

A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[CrossRef] [PubMed]

1815 (1)

D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[CrossRef]

Adams, R. L.

W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[CrossRef] [PubMed]

Ansari, R. R.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Arnold, M. A.

A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[CrossRef] [PubMed]

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

Arnone, D. D.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Baba, J. S.

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

Bettelheim, F. A.

T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[CrossRef] [PubMed]

Birch, D. J. S.

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

Böckle, S.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Borchert, M. S.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Bour, L. J.

L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[CrossRef] [PubMed]

Brennan, N. A.

Brewster, D.

D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[CrossRef]

Burmeister, J. J.

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

Cameron, B. D.

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

Cavuoto, L. A.

Chou, C.

Cicenaite, I.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Coté, G. L.

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[CrossRef] [PubMed]

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[CrossRef] [PubMed]

Cóte, G. L.

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

Davies, A. G.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Donohue, D. J.

Dor, B. B.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

Doyle, K. B.

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

Elsey, T. S.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Enejder, A. M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Esenaliev, R. O.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001).
[CrossRef] [PubMed]

Evans, N. D.

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

Farrell, R. A.

Feld, M. S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Feng, C. M.

Fox, M. D.

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[CrossRef] [PubMed]

Genberg, V. L.

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

Gnudi, L.

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

Goetz, M. J.

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

Golubenko, I.

E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[CrossRef]

Gorde, H. W.

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

Götzinger, E.

C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]

Han, C. Y.

Helwig, A. M.

Hitzenberger, C. K.

C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]

Hoffman, J. M.

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

Horowitz, G. L.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Huang, X. R.

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]

Huang, X.-R.

Huang, Y. C.

Hunter, M.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Jaronski, J. W.

J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[CrossRef] [PubMed]

Kasprzak, H. T.

J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[CrossRef] [PubMed]

Katika, K. M.

King, T. W.

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

Knighton, R. W.

R. W. Knighton, X.-R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008).
[CrossRef] [PubMed]

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]

Kreiner, C. F.

R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[CrossRef] [PubMed]

Kruizinga, B.

E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[CrossRef]

Kuo, W. C.

Kuranov, R. V.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Kurth, C. D.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

Lambert, J. L.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Larin, K. V.

Larina, I. V.

Linfield, E. H.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Liou, H.-L.

Loepke, A. W.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

Lopes Cardozo, N. J.

L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[CrossRef] [PubMed]

Malik, B. H.

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[CrossRef] [PubMed]

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[CrossRef] [PubMed]

March, W. F.

W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[CrossRef] [PubMed]

Maurice, D.

D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[CrossRef] [PubMed]

McCally, R. L.

McCann, J. C.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

McNichols, R.

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

Michels, G. J.

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

Misson, G. P.

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[CrossRef] [PubMed]

Morookian, J. M.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Motamedi, M.

Naylor, E. J.

A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).

A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[CrossRef] [PubMed]

Nelson, L. A.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

Niessner, R.

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[CrossRef] [PubMed]

Northrop, R. B.

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[CrossRef] [PubMed]

Oh, J.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Pickup, J. C.

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

Pilon, L.

Pircher, M.

C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]

Pohjola, S.

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

Prough, D.

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Prough, D. S.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

Rabinovitch, B.

B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[CrossRef] [PubMed]

Rawer, R.

R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[CrossRef] [PubMed]

Raz, I.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Rolinski, O. J.

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

Rouseff, D.

Rovati, L.

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

Sapozhnikova, V. V.

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Sasic, S.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Satheesan, B.

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

Scecina, T. G.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Shen, Y. C.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Shih, W. C.

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

Shusterman, A.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Shyu, J. C.

Sirk, S. J.

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Small, G. W.

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

A. M. Helwig, M. A. Arnold, and G. W. Small, “Evaluation of Kromoscopy: resolution of glucose and urea,” Appl. Opt. 39(25), 4715–4720 (2000).
[CrossRef] [PubMed]

Sokolova, E.

E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[CrossRef]

Spanner, G.

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[CrossRef] [PubMed]

Stanworth, A.

A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).

A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[CrossRef] [PubMed]

Stork, W.

R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[CrossRef] [PubMed]

Stoyanov, B. J.

Taday, P. F.

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Tuchin, V. V.

V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[CrossRef]

Van Blokland, G. J.

Verhelst, S. C.

Wang, T. J. Y.

T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[CrossRef] [PubMed]

Weiss, R.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Wu, J.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

Yegorchikov, Y.

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

Acta Ophthalmol. (Copenh.) (1)

S. Pohjola, “The glucose content of the aqueous humor in man,” Acta Ophthalmol. (Copenh.) 88, 11–80 (1966).

Anal. Bioanal. Chem. (1)

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Anal. Bioanal. Chem. 355(3-4), 327–328 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Br. J. Ophthalmol. (1)

A. Stanworth and E. J. Naylor, “The polarization optics of the isolated cornea,” Br. J. Ophthalmol. 34(4), 201–211 (1950).
[CrossRef] [PubMed]

Bull. Soc. Belge Ophtalmol. (1)

C. K. Hitzenberger, E. Götzinger, and M. Pircher, “Birefringence properties of the human cornea measured with polarization sensitive optical coherence tomography,” Bull. Soc. Belge Ophtalmol. 302(302), 153–168 (2006).
[PubMed]

Comp. Biochem. Physiol. Comp. Physiol. (1)

T. J. Y. Wang and F. A. Bettelheim, “Comparative birefringence of cornea,” Comp. Biochem. Physiol. Comp. Physiol. 51(11A), 89–94 (1975).
[CrossRef] [PubMed]

Diabetes Care (2)

B. Rabinovitch, W. F. March, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations,” Diabetes Care 5(3), 254–258 (1982).
[CrossRef] [PubMed]

W. F. March, B. Rabinovitch, and R. L. Adams, “Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens,” Diabetes Care 5(3), 259–265 (1982).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (5)

J. J. Burmeister, M. A. Arnold, and G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000).
[CrossRef] [PubMed]

N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. S. Birch, and J. C. Pickup, “Non-invasive glucose monitoring by NAD(P)H autofluorescence spectroscopy in fibroblasts and adipocytes: a model for skin glucose sensing,” Diabetes Technol. Ther. 5(5), 807–816 (2003).
[CrossRef] [PubMed]

R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007).
[CrossRef] [PubMed]

B. D. Cameron, J. S. Baba, and G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001).
[CrossRef] [PubMed]

B. D. Cameron, H. W. Gorde, B. Satheesan, and G. L. Coté, “The use of polarized laser light through the eye for noninvasive glucose monitoring,” Diabetes Technol. Ther. 1(2), 135–143 (1999).
[CrossRef] [PubMed]

Exp. Biol. Med. (Maywood) (1)

V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, and R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006).
[PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

R. Rawer, W. Stork, and C. F. Kreiner, “Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye,” Graefes Arch. Clin. Exp. Ophthalmol. 242(12), 1017–1023 (2004).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

B. D. Cameron and G. L. Cóte, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44(12), 1221–1227 (1997).
[CrossRef] [PubMed]

G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39(7), 752–756 (1992).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002).
[PubMed]

J. Biomed. Opt. (6)

B. H. Malik and G. L. Coté, “Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor,” J. Biomed. Opt. 15(3), 037012 (2010).
[CrossRef] [PubMed]

V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008).
[CrossRef] [PubMed]

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. B. Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef] [PubMed]

A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[CrossRef] [PubMed]

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt. 15(1), 017002 (2010).
[CrossRef] [PubMed]

R. R. Ansari, S. Böckle, and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

A. Stanworth and E. J. Naylor, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 160–163 (1953).

J. Opt. Soc. Am. A (4)

J. Raman Spectrosc. (1)

J. L. Lambert, J. M. Morookian, S. J. Sirk, and M. S. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002).
[CrossRef]

Ophthalmic Physiol. Opt. (2)

G. P. Misson, “Circular polarization biomicroscopy: a method for determining human corneal stromal lamellar organization in vivo,” Ophthalmic Physiol. Opt. 27(3), 256–264 (2007).
[CrossRef] [PubMed]

J. W. Jaronski and H. T. Kasprzak, “Linear birefringence measurements of the in vitro human cornea,” Ophthalmic Physiol. Opt. 23(4), 361–369 (2003).
[CrossRef] [PubMed]

Opt. Eng. (2)

T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz., “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33(8), 2746–2753 (1994).
[CrossRef]

E. Sokolova, B. Kruizinga, and I. Golubenko, “Recording of concave diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43(11), 2613–2622 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

D. Maurice, “The Charles Prentice award lecture 1989: the physiology of tears,” Optom. Vis. Sci. 67(6), 391–399 (1990).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

D. Brewster, “Experiments on the Depolarisation of Light as Exhibited by Various Mineral, Animal, and Vegetable Bodies, with a Reference of the Phenomena to the General Principles of Polarisation,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 105(0), 29–53 (1815).
[CrossRef]

Phys. Med. Biol. (1)

Y. C. Shen, A. G. Davies, E. H. Linfield, T. S. Elsey, P. F. Taday, and D. D. Arnone, “The use of Fourier-transform infrared spectroscopy for the quantitative determination of glucose concentration in whole blood,” Phys. Med. Biol. 48(13), 2023–2032 (2003).
[CrossRef] [PubMed]

Phys.-Usp. (1)

V. V. Tuchin, “Light scattering study of tissues,” Phys.-Usp. 40(5), 495–515 (1997).
[CrossRef]

Proc. SPIE (1)

K. B. Doyle, J. M. Hoffman, V. L. Genberg, and G. J. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).

Vision Res. (1)

L. J. Bour and N. J. Lopes Cardozo, “On the birefringence of the living human eye,” Vision Res. 21(9), 1413–1421 (1981).
[CrossRef] [PubMed]

Other (6)

D. Atchison, and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, UK, 2000).

B. D. Cameron, “The application of polarized light to biomedical diagnostics and monitoring,” Ph.D. Dissertation, Texas A&M University, College Station, TX 77843 (2000).

H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics / Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1. http://www.opticsinfobase.org/abstract.cfm?URI=BOSD-1998-BTuC1

M. Born, and E. Wolf, “Form Birefringence,” in Principles of Optics (Cambridge University Press, Cambridge, UK, 1998).

E. Hecht, Optics (Addison Wesley, Reading, MA, 2001).

M. J. Goetz, Jr., “Microdegree Polarimetry for Glucose Detection,” M.S. Thesis, University of Connecticut, Storrs, CT 06269 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Representative dimensions and refractive indices of the eye model. The lower boundary of the anterior chamber indicates the position of pupil and lens.

Fig. 2
Fig. 2

Local Cartesian coordinate system at an arbitrary point P on the posterior corneal surface. The system is aligned such that the z-axis is coincident with the local normal, and the x-y plane represents the tangential plane at point P.

Fig. 3
Fig. 3

Optical configuration for experimental measurement of corneal birefringence. Note that one of the mirrors was placed on a flip mount in order to couple either wavelength at a time.

Fig. 4
Fig. 4

Optical path through the anterior chamber of the eye for unmatched refractive indices. The angle of incidence, α, is measured from the horizontal. Note that light has to be incident at a relatively glancing angle with respect to the posterior corneal surface in order for the beam to exit the anterior chamber through the cornea. There is no visible difference (on the current scale) between the optical paths taken by the two beams at different wavelengths, and hence, a single beam path is shown.

Fig. 5
Fig. 5

Angle of major axis of polarization ellipse as a function of angle of incidence for beam position at (a) 2.5 mm, (b) 2.0 mm, and (c) 1.6 mm below the corneal apex. . Note that the change in the angle of major axis of the output beam (i.e. the y-axis) represents the effect of corneal birefringence only. The angles are calculated assuming only aqueous humor without glucose or any other optical rotatory components present in the anterior chamber of eye.

Fig. 6
Fig. 6

Optical path through the anterior chamber of the eye for beam position and angle of incidence at (a) 1.6 mm and 16o, (b) 2.0 mm and 23o, and (c) 2.5 mm and 28o, respectively. The angle of incidence for each instance was chosen to be in the most stable region of change in major axis. Note that output beams in (b) and (c) are more divergent when compared to (a).

Fig. 7
Fig. 7

Intra-eye variation of the measured angle of the major axis of polarization ellipse as a function of wavelength and angle of incidence. Note that the angle of the major axis changes significantly with change in angle of incidence, but the net change between the data points for respective wavelengths is relatively constant.

Metrics