Abstract

Agents that alter the dynamics of hemostasis form an important part in management of conditions such as atherosclerosis, cerebrovascular disease, and bleeding diatheses. In this study, we explored the effects of heparin and tranexamic acid on the efficiency of blood coagulation. Using optical tweezers, we evaluated the pN-range micro-interaction between coagulating red blood cells (RBCs) by measuring the minimum power required to trap them. By observing the mobility of RBCs and the intensity of cellular interactions, we found that the coagulation process can be separated into three phases. The effects of heparin and tranexamic acid were examined by observing variations in cellular interaction during the coagulation phases. Heparin attenuated the interaction between RBCs and prolonged the first phase whereas the samples containing tranexamic acid bypassed the first two phases and immediately proceeded to the final one.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tortora, and S. R. Grabowski, Introduction to the human body: the essentials of anatomy and physiology (John Wiley & Sons, New York, 2000).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
    [CrossRef] [PubMed]
  4. S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
    [CrossRef]
  5. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
    [CrossRef] [PubMed]
  6. R. D. Kleeman, A Kinetic Theory of Gases and Liquids (BiblioLife, LLC, 2009).
  7. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  8. M. Baszun and D. Grzeȩda, “Applications of shear horizontal surface acoustic waves to thin film evaluation,” J. Mater. Process. Technol. 133(1-2), 34–38 (2003).
    [CrossRef]
  9. China Chemical and Pharmaceutical, Taipei, Taiwan, http://www.ccpc.com.tw/en/home.htm .
  10. Atlanta Biomedicine, Taoyuan, Taiwan, http://www.atalanta.com.tw/OutWeb/L_EN/Main.asp?TTL=43078 .

2006 (1)

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

2003 (1)

M. Baszun and D. Grzeȩda, “Applications of shear horizontal surface acoustic waves to thin film evaluation,” J. Mater. Process. Technol. 133(1-2), 34–38 (2003).
[CrossRef]

1999 (1)

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

1996 (1)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1986 (1)

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Baszun, M.

M. Baszun and D. Grzeȩda, “Applications of shear horizontal surface acoustic waves to thin film evaluation,” J. Mater. Process. Technol. 133(1-2), 34–38 (2003).
[CrossRef]

Beattie, W. S.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Bhalotra, S. R.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Bjorkholm, J. E.

Boyda, E. K.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Brody, A. L.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Brown, B. L.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Dattilo, K. M.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Dziedzic, J. M.

Fedorko, L.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Ghannam, M.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Grze?da, D.

M. Baszun and D. Grzeȩda, “Applications of shear horizontal surface acoustic waves to thin film evaluation,” J. Mater. Process. Technol. 133(1-2), 34–38 (2003).
[CrossRef]

Hamdy, A.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Karkouti, K.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

McCluskey, S. A.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Prentiss, M.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Smith, S. P.

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

Wijeysundera, D. N.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Yau, T. M.

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Am. J. Phys. (1)

S. P. Smith, S. R. Bhalotra, A. L. Brody, B. L. Brown, E. K. Boyda, and M. Prentiss, “Inexpensive optical tweezers for undergraduate laboratories,” Am. J. Phys. 67(1), 26–35 (1999).
[CrossRef]

Biophys. J. (2)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70(4), 1813–1822 (1996).
[CrossRef] [PubMed]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

J. Mater. Process. Technol. (1)

M. Baszun and D. Grzeȩda, “Applications of shear horizontal surface acoustic waves to thin film evaluation,” J. Mater. Process. Technol. 133(1-2), 34–38 (2003).
[CrossRef]

Opt. Lett. (1)

Transfusion (1)

K. Karkouti, W. S. Beattie, K. M. Dattilo, S. A. McCluskey, M. Ghannam, A. Hamdy, D. N. Wijeysundera, L. Fedorko, and T. M. Yau, “A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery,” Transfusion 46(3), 327–338 (2006).
[CrossRef] [PubMed]

Other (4)

R. D. Kleeman, A Kinetic Theory of Gases and Liquids (BiblioLife, LLC, 2009).

China Chemical and Pharmaceutical, Taipei, Taiwan, http://www.ccpc.com.tw/en/home.htm .

Atlanta Biomedicine, Taoyuan, Taiwan, http://www.atalanta.com.tw/OutWeb/L_EN/Main.asp?TTL=43078 .

G. J. Tortora, and S. R. Grabowski, Introduction to the human body: the essentials of anatomy and physiology (John Wiley & Sons, New York, 2000).

Supplementary Material (2)

» Media 1: MPG (2029 KB)     
» Media 2: MPG (3112 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Estimation of trapping force on a particle by dragging the sample stage.

Fig. 2
Fig. 2

Evaluation of the interaction between RBCs by the trapping force of optical tweezers.

Fig. 3
Fig. 3

A schematic diagram of the optical tweezers where the red dashed rectangle illustrates the microscope.

Fig. 4
Fig. 4

Trapping force as a function of optical power, where “Power” denotes the laser power and “Force” the induced trapping force. Based on the data listed in Table 1, the blue dashed curve with 10% error bars is plotted here along with its red linear trend line.

Fig. 5
Fig. 5

(Media 1). The process to evaluate the interaction between coagulating RBCs.

Fig. 6
Fig. 6

The preparation of blood samples for coagulation experiments.

Fig. 7
Fig. 7

(Media 2). (a) The variation of interaction between coagulating cells in normal blood samples. Note that subject 1 is a male of age 15, subject 2 is a male of age 22, subject 3 is a female of age 23, subject 4 is a female of age 33, and subject 5 is a male of age 39. (b) Variations in cellular interactions in blood samples treated with heparin [9]. (c) Variations in cellular interactions in blood samples treated with tranexamic acid [10]. (d) Variations in averaged cell interactions in three types of blood samples. The control samples are denoted as “Normal”; the ones treated with heparin or tranexamic acid are denoted as “Heparin” or “Tranexamic”, respectively.

Tables (1)

Tables Icon

Table 1 Trapping force induced by varying laser power, where “Power” denotes the laser power P, “Speed” indicates the dragging speed v, and “Force” the trapping force of the optical tweezers. The trapping force is derived from Eq. (1) with the viscosity coefficient η of 0.0055 N-sec/m2 [8] and the cell radius R of ~4.5 μm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F D = 6 π η R v ,
F L = n P / c ,

Metrics