Abstract

We describe the development and application of intravital confocal micro-videography to visualize entrance, distribution, and clearance of drugs within various tissues and organs. We use a Nikon A1R confocal laser scanning microscope system attached to an upright ECLIPSE FN1. The Nikon A1R allows simultaneous four channel acquisition and speed of 30 frames per second while maintaining high resolution of 512 × 512 scanned points. The key techniques of our intravital imaging are (1) to present a flat and perpendicular surface to the objective lens, and (2) to expose the subject with little or no bleeding to facilitate optical access to multiple tissues and organs, and (3) to isolate the subject from the body movement without compressing the blood vessels, and (4) to insert a tail vein catheter for timed injection without moving the subject. Ear lobe dermis tissue was accessible without surgery. Liver, kidney, and subcutaneous tumor were accessed following exteriorization through skin incision. In order to image initial extravasations of compounds into tissue following intravenous injection, movie acquisition was initialized prior to drug administration. Our technique can serve as a powerful tool for investigating biological mechanisms and functions of intravenously injected drugs, with both spatial and temporal resolution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
    [CrossRef]
  2. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
    [CrossRef] [PubMed]
  3. P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
    [CrossRef] [PubMed]
  4. R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
    [CrossRef] [PubMed]
  5. R. Mehvar and T. L. Shepard, “Molecular-weight-dependent pharmacokinetics of fluorescein-labeled dextrans in rats,” J. Pharm. Sci. 81(9), 908–912 (1992).
    [CrossRef] [PubMed]
  6. G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
    [CrossRef] [PubMed]
  7. F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
    [CrossRef] [PubMed]
  8. H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Ther. 10(6), 453–458 (2003).
    [CrossRef] [PubMed]
  9. D. Liu and J. E. Knapp, “Hydrodynamics-based gene delivery,” Curr. Opin. Mol. Ther. 3(2), 192–197 (2001).
    [PubMed]
  10. A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
    [CrossRef] [PubMed]
  11. T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
    [PubMed]
  12. G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
    [CrossRef] [PubMed]
  13. Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
    [CrossRef] [PubMed]

2010

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

2008

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

2007

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

2005

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
[CrossRef] [PubMed]

2004

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

2003

H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Ther. 10(6), 453–458 (2003).
[CrossRef] [PubMed]

2001

D. Liu and J. E. Knapp, “Hydrodynamics-based gene delivery,” Curr. Opin. Mol. Ther. 3(2), 192–197 (2001).
[PubMed]

1999

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
[CrossRef] [PubMed]

1994

R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
[CrossRef] [PubMed]

1992

R. Mehvar and T. L. Shepard, “Molecular-weight-dependent pharmacokinetics of fluorescein-labeled dextrans in rats,” J. Pharm. Sci. 81(9), 908–912 (1992).
[CrossRef] [PubMed]

Aliño, S. F.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Benet, M.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Birn, H.

Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
[CrossRef] [PubMed]

Biss, D. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Budker, V.

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

Calvete, J. J.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Christensen, E. I.

Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
[CrossRef] [PubMed]

Chung, E.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Cote, D.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Côté, D.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Crespo, A.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Dasí, F.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Dean, D. A.

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Fukumura, D.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Gao, X.

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Gasiorowski, J. Z.

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Herweijer, H.

H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Ther. 10(6), 453–458 (2003).
[CrossRef] [PubMed]

Hung, K. E.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Jain, R. K.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Kim, P.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Knapp, J. E.

D. Liu and J. E. Knapp, “Hydrodynamics-based gene delivery,” Curr. Opin. Mol. Ther. 3(2), 192–197 (2001).
[PubMed]

Kucherlapati, R.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Lin, C. P.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Liu, D.

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

D. Liu and J. E. Knapp, “Hydrodynamics-based gene delivery,” Curr. Opin. Mol. Ther. 3(2), 192–197 (2001).
[PubMed]

F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
[CrossRef] [PubMed]

Liu, F.

F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
[CrossRef] [PubMed]

Mehvar, R.

R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
[CrossRef] [PubMed]

R. Mehvar and T. L. Shepard, “Molecular-weight-dependent pharmacokinetics of fluorescein-labeled dextrans in rats,” J. Pharm. Sci. 81(9), 908–912 (1992).
[CrossRef] [PubMed]

Mizoguchi, A.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Ohno, Y.

Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
[CrossRef] [PubMed]

Peydró, A.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Revert, F.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

Reynolds, J. M.

R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
[CrossRef] [PubMed]

Robinson, M. A.

R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
[CrossRef] [PubMed]

Shepard, T. L.

R. Mehvar and T. L. Shepard, “Molecular-weight-dependent pharmacokinetics of fluorescein-labeled dextrans in rats,” J. Pharm. Sci. 81(9), 908–912 (1992).
[CrossRef] [PubMed]

Song, Y.

F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
[CrossRef] [PubMed]

Song, Y. K.

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Spencer, J. A.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Stolz, D. B.

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Suda, T.

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

Veilleux, I.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

Vollmer, R.

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

Wolff, J. A.

H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Ther. 10(6), 453–458 (2003).
[CrossRef] [PubMed]

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

Yamashita, H.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Yun, S. H.

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

Zhang, G.

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

Curr. Opin. Mol. Ther.

D. Liu and J. E. Knapp, “Hydrodynamics-based gene delivery,” Curr. Opin. Mol. Ther. 3(2), 192–197 (2001).
[PubMed]

Gene Ther.

A. Crespo, A. Peydró, F. Dasí, M. Benet, J. J. Calvete, F. Revert, and S. F. Aliño, “Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles,” Gene Ther. 12(11), 927–935 (2005).
[CrossRef] [PubMed]

T. Suda, X. Gao, D. B. Stolz, and D. Liu, “Structural impact of hydrodynamic injection on mouse liver,” Gene Ther. 14(2), 129–137 (2007).
[PubMed]

G. Zhang, X. Gao, Y. K. Song, R. Vollmer, D. B. Stolz, J. Z. Gasiorowski, D. A. Dean, and D. Liu, “Hydroporation as the mechanism of hydrodynamic delivery,” Gene Ther. 11(8), 675–682 (2004).
[CrossRef] [PubMed]

F. Liu, Y. Song, and D. Liu, “Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA,” Gene Ther. 6(7), 1258–1266 (1999).
[CrossRef] [PubMed]

H. Herweijer and J. A. Wolff, “Progress and prospects: naked DNA gene transfer and therapy,” Gene Ther. 10(6), 453–458 (2003).
[CrossRef] [PubMed]

Hum. Gene Ther.

G. Zhang, V. Budker, and J. A. Wolff, “High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA,” Hum. Gene Ther. 10(10), 1735–1737 (1999).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

I. Veilleux, J. A. Spencer, D. P. Biss, D. Cote, and C. P. Lin, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron. 14(1), 10–18 (2008).
[CrossRef]

J. Biomed. Opt.

P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008).
[CrossRef] [PubMed]

J. Pharm. Sci.

R. Mehvar, M. A. Robinson, and J. M. Reynolds, “Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats,” J. Pharm. Sci. 83(10), 1495–1499 (1994).
[CrossRef] [PubMed]

R. Mehvar and T. L. Shepard, “Molecular-weight-dependent pharmacokinetics of fluorescein-labeled dextrans in rats,” J. Pharm. Sci. 81(9), 908–912 (1992).
[CrossRef] [PubMed]

Nat. Methods

P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, and S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010).
[CrossRef] [PubMed]

Nephron, Exp. Nephrol.

Y. Ohno, H. Birn, and E. I. Christensen, “In vivo confocal laser scanning microscopy and micropuncture in intact rat,” Nephron, Exp. Nephrol. 99(1), e17–e25 (2005).
[CrossRef] [PubMed]

Supplementary Material (7)

» Media 1: MOV (3478 KB)     
» Media 2: MOV (3610 KB)     
» Media 3: MOV (3534 KB)     
» Media 4: MOV (3612 KB)     
» Media 5: MOV (3058 KB)     
» Media 6: MOV (3262 KB)     
» Media 7: MOV (2957 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) The earlobe is an excellent location for intravital confocal micro-videography because blood vessels are easily observed in the dermis and the ear is easily accessed and positioned in the imaging apparatus. (b) Earlobe was attached to the coverslip with a small drop of immersion oil. (c) Fluorescein, FD 10-, 70-, and 500 kDa were administered via tail vein catheter 10 seconds after movie acquisition was initiated. Video-rate (30 fps) movies were recorded for the first minute, and subsequent time-lapse images were recorded every minute for an additional 60 minutes. The arrow indicates lymphatic drainage. Obtained data sets were further processed using Nikon NIS-Elements C software. Image size: 645.50μm x 645.50μm. (d) Three regions of interest (ROI) are selected respectively as an artery (red), vein (blue), and extravascular skin tissue (green). Image size: 645.50μm x 645.50μm. (e) Fluorescence intensity in these ROIs plotted against time. All movies are provided as supplementary movie files (Media 1, Media 2, Media 3, and Media 4).

Fig. 2
Fig. 2

(a) Intravital confocal micro-videography of the mouse hepatic lobule. Hoechst (blue) was intravenously injected 15 minutes before imaging. Cy5-labeled pDNA (red) were normally or hydrodynamically (HD) injected via tail vein catheter 10 seconds after movie acquisition was initiated (Media 5 and Media 6). Image frames were extracted from both videos at identical time points for comparison. Image size: 645.50μm x 645.50μm. Zoomed pictures were taken 30 minutes after injection. Image size: 212.13μm x 212.13μm. Hoechst channels are shown at 10 sec and 30 min for histological comprehension. Arrows indicate reverse blood flow from central vein. Arrowheads indicate nuclei that pDNA were successfully transferred. (b) Intravital confocal micro-videography of mouse kidney tissue. Hoechst (blue) and Evan’s Blue dye (red) were intravenously injected 15 minutes and 5 minutes before imaging, respectively. FD 10 kDa (green) were administered via tail vein catheter 10 seconds after movie acquisition was initiated (Media 7). Image size: 645.50μm x 645.50μm.

Fig. 3
Fig. 3

(a) Intravital confocal micro-videography of subcutaneous HeLa-H2BGFP tumor. Evan’s blue dye was administered via tail vein catheter 10 seconds after movie acquisition was initiated. Image frames were extracted from the video at indicated time points. Image size: 212.13μm x 212.13μm (b) Motorized XY stage enables ‘large image acquisition’ feature of the Nikon NIS-Elements C software. Multiple frames were automatically captured in sequence and merged to produce a wide-area image. Scale bar: 1 mm.

Tables (1)

Tables Icon

Table 1 Commercially available rapid scanning confocal microscopes

Metrics