Abstract

Doppler optical coherence tomography has the capability to measure blood flow quantitatively and in vivo. As only the axial component of the velocity can be assessed, the measurements have to be corrected for the angle of the vessels. We present a novel approach to extract quantitative flow data from circumpapillary scans in vivo on the human retina by registering the circular scan to a reference volume scan and extracting the angle directly from the volume. In addition, we perform phase unwrapping and interpolation of the flow under the assumption of a parabolic flow profile. We demonstrate the repeatability of the methods by applying it to different retinal vessels, achieving coefficients of variation of the average velocity of 3 to 8%. Results on the pulsatility and resistance index are also presented.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, and J. G. Fujimoto, eds., Optical Coherence Tomography - Technology and Applications (Springer, 2008).
  2. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  3. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  4. W. Drexler, R. A. Leitgeb, and C. K. Hitzenberger, “New Developments in Optical Coherence Tomography Technology,” in Medical Retina, R. F. Spaide, ed. (Springer, 2009).
  5. L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia 42(4), 387–405 (1999).
    [CrossRef] [PubMed]
  6. C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
    [PubMed]
  7. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
    [CrossRef] [PubMed]
  8. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  9. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  10. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  11. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  12. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  13. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
    [CrossRef] [PubMed]
  14. C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009).
    [CrossRef] [PubMed]
  15. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  16. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  17. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  18. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  19. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  20. B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
    [CrossRef] [PubMed]
  21. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
    [PubMed]
  22. R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
    [CrossRef] [PubMed]
  23. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
    [CrossRef] [PubMed]
  24. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
    [CrossRef] [PubMed]
  25. Y.-C. Ahn, W. Jung, and Z. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007).
    [CrossRef] [PubMed]
  26. J. Meng, Z. Ding, J. Li, K. Wang, and T. Wu, “Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography,” Opt. Express 18(2), 1261–1270 (2010).
    [CrossRef] [PubMed]
  27. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
    [CrossRef] [PubMed]
  28. D. Piao and Q. Zhu, “Direct bidirectional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography,” Appl. Opt. 44(3), 348–357 (2005).
    [CrossRef] [PubMed]
  29. Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [CrossRef] [PubMed]
  30. H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
    [CrossRef] [PubMed]
  31. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
    [CrossRef] [PubMed]
  32. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  33. V. V. Tuchin, Optical clearing of tissues and blood, (SPIE Press, 2006).
  34. L. Waite, and J. Fine, Applied biofluid mechanics, (McGraw Hill, 2007).
  35. J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
    [CrossRef] [PubMed]

2010

2009

2008

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
[CrossRef] [PubMed]

2007

2006

2005

2003

2002

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
[CrossRef] [PubMed]

1999

L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia 42(4), 387–405 (1999).
[CrossRef] [PubMed]

1994

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

1965

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Ahn, Y.-C.

An, L.

Bachmann, A. H.

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Bajraszewski, T.

Blatter, C.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

Bouma, B. E.

Bower, B. A.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Cable, A.

Cense, B.

Chen, T. C.

Chen, Y.

Chen, Z.

Chen, Z. P.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Chiang, H. K.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Costa, V. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Cranstoun, S. D.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

Davis, A. M.

de Boer, J. F.

Ding, Z.

Dragostinoff, N.

Drexler, W.

Ellis, S.

J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
[CrossRef] [PubMed]

Fabritius, T.

Fercher, A. F.

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gorczynska, I.

Götzinger, E.

Gregori, G.

Grulkowski, I.

Grunwald, J. E.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

Haller, H.

J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, Y.

Huang, D.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[CrossRef] [PubMed]

Izatt, J. A.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[PubMed]

Jiang, J.

Jiao, S.

Jung, W.

Kolbitsch, C.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

Kowalczyk, A.

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Kuppermann, B. D.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Kurtz, R. M.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Lasser, T.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

Li, J.

Makita, S.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Meng, J.

Michaely, R.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Nassif, N.

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Park, B. H.

Pedersen, C. J.

Petrig, B. L.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

Piao, D.

Pierce, M. C.

Pircher, M.

Potsaid, B.

Puliafito, C. A.

Qin, J.

Radermacher, J.

J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
[CrossRef] [PubMed]

Rao, B.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Renard, J. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Riva, C. E.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

Rollins, A. M.

C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007).
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[PubMed]

Ruggeri, M.

Schmetterer, L.

Schmoll, T.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Shure, M. A.

Srinivasan, V. J.

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Tao, Y. K.

Tearney, G. J.

Villiger, M. L.

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

Wang, K.

Wang, R. K.

Wang, Y. M.

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Wehbe, H.

Werkmeister, R. M.

White, B. R.

Wojtkowski, M.

Wolzt, M.

L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia 42(4), 387–405 (1999).
[CrossRef] [PubMed]

Wu, T.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[PubMed]

Yu, L. F.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Zacharias, L. C.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhao, W.

Zhu, Q.

Appl. Opt.

Arch. Ophthalmol.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003).
[PubMed]

Comput. J.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Diabetologia

L. Schmetterer and M. Wolzt, “Ocular blood flow and associated functional deviations in diabetic retinopathy,” Diabetologia 42(4), 387–405 (1999).
[CrossRef] [PubMed]

Hypertension

J. Radermacher, S. Ellis, and H. Haller, “Renal resistance index and progression of renal disease,” Hypertension 39(2), 699 (2002).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, “Choroidal blood flow in the foveal region of the human ocular fundus,” Invest. Ophthalmol. Vis. Sci. 35(13), 4273–4281 (1994).
[PubMed]

J Biophotonics

C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Histogram-based filtering for quantitative 3D retinal angiography,” J Biophotonics 2(6-7), 416–425 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Rao, L. F. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. P. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography,” J. Biomed. Opt. 12(4), 041213–041217 (2007).
[CrossRef] [PubMed]

Y. M. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[CrossRef] [PubMed]

Opt. Express

H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
[CrossRef] [PubMed]

J. Meng, Z. Ding, J. Li, K. Wang, and T. Wu, “Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography,” Opt. Express 18(2), 1261–1270 (2010).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Prog. Retin. Eye Res.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002).
[CrossRef] [PubMed]

Other

W. Drexler, R. A. Leitgeb, and C. K. Hitzenberger, “New Developments in Optical Coherence Tomography Technology,” in Medical Retina, R. F. Spaide, ed. (Springer, 2009).

W. Drexler, and J. G. Fujimoto, eds., Optical Coherence Tomography - Technology and Applications (Springer, 2008).

V. V. Tuchin, Optical clearing of tissues and blood, (SPIE Press, 2006).

L. Waite, and J. Fine, Applied biofluid mechanics, (McGraw Hill, 2007).

Supplementary Material (1)

» Media 1: AVI (1779 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical setup used during the experiments, BS: beam splitter, FC: fiber coupler, L1, L2: telescope lenses.

Fig. 2
Fig. 2

Registered volume, the location of the reference scans that are shown on the top are denoted by the gray slabs.

Fig. 3
Fig. 3

(a) Pattern of circular scans used for manual segmentation of the vessels, for display purposes only every second circle is displayed, (b) Schematic that illustrates the recorded circular scan after registration to the volume, the red lines denote manually segmented vessel traces from which the angle α is extracted at the respective positions.

Fig. 4
Fig. 4

Registration of the 2D circular scan to the 3D volume, (a) initial guess vs. final registration result, (b) projections of the RPE and PR before and after registration, (c) top: circular scan that has been recorded, bottom: virtual scan before and after registration, images are contrast-enhanced, (d) Doppler OCT scan corresponding to the recorded circular scan.

Fig. 5
Fig. 5

Registration of the vessels in the XY projection of a recorded time series. (a) Z-projection of an acquired circular scan time series before registration. Note the changing distance between the vessels in the left image. (b) The same time series after registration of the vessels for easy extraction of the flow. Parts that have not been chosen for registration are black.

Fig. 6
Fig. 6

Screenshot of a video that shows a fly-through through a Doppler OCT scan before and after registration and with segmented ellipses, in this case done exemplarily on all vessels (Media 1).

Fig. 7
Fig. 7

Examples of the flow processing procedure, (a) 3D flow profile before processing, (b) 3D flow profile after phase unwrapping, (c) 3D flow after interpolation of the flow under the assumption of a parabolic flow profile, inlets show corresponding 2D images; in (a) and (b) flow values in the middle of the vessel were set to zero for better visualization.

Fig. 8
Fig. 8

Simplified flow chart of the processing pipeline after registration of the volume, see text for details.

Fig. 9
Fig. 9

Influence of phase unwrapping and interpolation on flow dynamics, left: flow trace over three pulses before phase unwrapping and interpolation, right: the same flow trace after phase unwrapping and interpolation, note also the different ranges on the velocity axis. The red, black, and green line denote the peak systolic, the average, and the peak diastolic flow respectively.

Fig. 10
Fig. 10

Example of a failed registration; the drifting apart of the intensity profiles may be due to distortions that lead to an egg shaped scan on the retina

Tables (1)

Tables Icon

Table 1 Results of repeatability measurements of flow parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 2 n g v cos α λ 0 ,
cos α = Δ z ( Δ x 2 + Δ y 2 + Δ z 2 ) 1 2
C ( f , g ) = r ( h { f } , h { g } )
r ( x , y ) = i = 1 n ( x i x ¯ ) ( y i y ¯ ) ( i = 1 n ( x i x ¯ ) 2 i = 1 n ( y i y ¯ ) 2 ) 1 2
Δ Φ ' = { Δ Φ     Δ Φ < 0 , Δ Φ 2 π Δ Φ > 0
Δ Φ ' = { Δ Φ     Δ Φ > 0 Δ Φ + 2 π Δ Φ < 0
[ 1 x y x 2 y 2 ] a = z
P I = v s y s t o l i c v d i a s t o l i c v ¯
R I = v s y s t o l i c - v d i a s t o l i c v s y s t o l i c .

Metrics