Abstract

Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
    [CrossRef] [PubMed]
  2. A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
    [PubMed]
  3. D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  6. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
    [CrossRef] [PubMed]
  7. A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
    [CrossRef] [PubMed]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  9. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  10. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  11. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  12. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  13. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  14. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
    [CrossRef] [PubMed]
  15. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  16. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
    [CrossRef]
  17. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
    [CrossRef] [PubMed]
  18. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef] [PubMed]
  19. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  21. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  22. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  23. J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17(22), 19698–19713 (2009).
    [CrossRef] [PubMed]
  24. K. S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44(19), 4009–4022 (2005).
    [CrossRef] [PubMed]
  25. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  26. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).
  27. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  28. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  29. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
    [CrossRef] [PubMed]

2010 (2)

2009 (5)

2008 (4)

2007 (3)

2005 (3)

2003 (3)

2002 (2)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
[PubMed]

2000 (2)

1998 (1)

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

1997 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

1982 (1)

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

Akcay, A. C.

Alex Vitkin, I.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

An, L.

Bajraszewski, T.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Barton, J. K.

Bouma, B.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Cable, A. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

Clarkson, E.

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Davis, A. M.

de Boer, J.

de Boer, J. F.

Delemos, T.

Drexler, W.

Fawzi, A.

Fercher, A.

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Francis, P.

Fujimoto, J.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Gil-Flamer, J.

Gorczynska, I.

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Grulkowski, I.

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[CrossRef] [PubMed]

Hanson, S. R.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hsu, K.

Huang, D.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hurst, S.

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

Jacques, S. L.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Jiang, J. Y.

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Koch, E.

Kolbitsch, C.

Kowalczyk, A.

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Kulkarni, M. D.

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Lee, K. S.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Lo, S.

Ma, Z.

Mariampillai, A.

Mok, A.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Mujat, M.

Munce, N. R.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Nassif, N.

Nelson, J. S.

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B.

Park, B. H.

Pekar, J.

Pierce, M.

Pierce, M. C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Qin, J.

Randall, C.

Roguin, A.

A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
[PubMed]

Rolland, J. P.

Rothenberg, F. G.

Saxer, C.

Schmetterer, L.

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seng-Yue, E.

Shen, Q.

Shepherd, N.

Sigel, B.

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Taira, K.

Tan, O.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vitkin, I. A.

Walther, J.

Wang, R. K.

Wang, Y.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Welch, A. J.

White, B.

White, D. N.

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Wilson, D. J.

Wojtkowski, M.

Xiang, S.

Yang, V. X. D.

Yazdanfar, S.

Yun, S. H.

Zawadzki, R.

Zhao, Y.

Appl. Opt. (1)

Br. J. Radiol. (1)

A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
[PubMed]

IEEE Trans. Sonics Ultrason. (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

J. Biomed. Opt. (1)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Med. (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Opt. Express (14)

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17(22), 19698–19713 (2009).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MOV (3364 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of the incident beam angle in relation to the flow direction; (b) Fiber-based swept-source OCT built on Mach-Zehnder interferometer; PD = photo-detector, Cir = circulator, and PC = polarization controller.

Fig. 2
Fig. 2

Example of acquired spectra consisting 5 sweep cycles.

Fig. 3
Fig. 3

Illustration of the Doppler phase stability measurement; (a) Doppler image; (b) Intensity image; (c) zoom-in of the intensity image in (b); (d) axial profile of the intensity image in (c).

Fig. 4
Fig. 4

An example of histogram distribution of the measured phase shift along with the corresponding Gaussian fitted curve (red dash line) for the case of (a) p = 1 and (b) p = 6; The horizontal axis is the phase shift error in mrad.

Fig. 5
Fig. 5

(Color online) Doppler images of an African frog tadpole that were simultaneously acquired at the same location at different times where (a, d, g, and j) are intensity images, (b, e, h, and k) and (c, f, i, and l) are Doppler images corresponding to p = 1 and p = 4, respectively.

Fig. 6
Fig. 6

(Color online) A representative frame of a video recording of flow activity within a tadpole heart acquired by multi-VDR demonstrating the capability of varying the detectable VDR of the Doppler map in real time (Media 1).

Fig. 7
Fig. 7

(Color online) (a) Conventional intensity image, (b) fast-flow Doppler image, and (c) slow-flow Doppler image acquired at the same location of the tadpole heart region.

Tables (1)

Tables Icon

Table 1 Quantification of the detectable velocity range according to each value of p

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V a x i a l ( z ) = λ 0 Δ φ ( z ) 4 π T n     ,
V a x i a l , max ( z ) = λ 0 4 T n     .
V a x i a l , min ( z ) = λ 0 Δ φ e r r ( z ) 4 π T n    
Δ φ ( z ; p ) = tan 1 [ m = 1 M 1 Im { I m * ( z ) I m + p ( z ) } m = 1 M 1 Re { I m * ( z ) I m + p ( z ) } ]     ,
V a x i a l ( z ) = λ 0 Δ φ ( z ; p ) / 4 π n p T 0    .

Metrics