Abstract

Using non-invasive, near-infrared spectroscopy we have previously reported optical signals measured at or around peripheral nerves in response to their stimulation. Such optical signals featured amplitudes on the order of 0.1% and peaked about 100 ms after peripheral nerve stimulation in human subjects. Here, we report a study of the spatial and spectral dependence of the optical signals induced by stimulation of the human median and sural nerves, and observe that these optical signals are: (1) unlikely due to either dilation or constriction of blood vessels, (2) not associated with capillary bed hemoglobin, (3) likely due to blood vessel(s) displacement, and (4) unlikely due to fiber-skin optical coupling effects. We conclude that the most probable origin of the optical response to peripheral nerve stimulation is from displacement of blood vessels within the optically probed volume, as a result of muscle twitch in adjacent areas.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
    [CrossRef] [PubMed]
  2. D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).
  3. S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).
  4. D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
    [CrossRef] [PubMed]
  5. J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
    [CrossRef] [PubMed]
  6. B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
    [CrossRef] [PubMed]
  7. M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004).
    [CrossRef] [PubMed]
  8. M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
    [CrossRef] [PubMed]
  9. H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
    [CrossRef] [PubMed]
  10. F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
    [CrossRef] [PubMed]
  11. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
    [CrossRef] [PubMed]
  12. J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
    [CrossRef] [PubMed]
  13. H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
    [CrossRef] [PubMed]
  14. S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).
  15. C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
    [CrossRef] [PubMed]
  16. N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988).
    [PubMed]
  17. T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
    [CrossRef] [PubMed]
  18. R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
    [CrossRef] [PubMed]
  19. M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).
  20. G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
    [CrossRef] [PubMed]
  21. V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
    [CrossRef] [PubMed]
  22. A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. II. Continuous-wave results,” J. Opt. Soc. Am. A 23(9), 2119–2131 (2006).
    [CrossRef] [PubMed]
  23. A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt. 48(10), D62–D73 (2009).
    [CrossRef] [PubMed]
  24. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
    [CrossRef] [PubMed]
  25. M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).
  26. M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
    [CrossRef] [PubMed]
  27. C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
    [PubMed]
  28. E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006).
    [CrossRef] [PubMed]
  29. V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
    [CrossRef] [PubMed]
  30. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing (Cambridge University Press, 1992).
  31. W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
    [CrossRef] [PubMed]
  32. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  33. M. Belau, M. Ninck, G. Hering, and T. Gisler, ” Non-Invasive Measurement of Skeletal Muscle Contraction with Time-Resolved Diffusing-Wave Spectroscopy,” Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010) paper BSuD70.
  34. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
    [CrossRef]
  35. F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
    [CrossRef]
  36. F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970).
    [CrossRef] [PubMed]
  37. H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
    [CrossRef] [PubMed]
  38. M. J. Blunt, “The vascular anatomy of the median nerve in the forearm and hand,” J. Anat. 93(1), 15–22 (1959).
    [PubMed]
  39. M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

2009 (5)

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt. 48(10), D62–D73 (2009).
[CrossRef] [PubMed]

2008 (2)

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

2007 (2)

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

2006 (3)

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006).
[CrossRef] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. II. Continuous-wave results,” J. Opt. Soc. Am. A 23(9), 2119–2131 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

2004 (3)

M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004).
[CrossRef] [PubMed]

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

2003 (2)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

2002 (1)

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

2001 (1)

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

2000 (3)

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

1999 (2)

W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
[CrossRef] [PubMed]

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

1998 (1)

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

1997 (2)

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
[CrossRef] [PubMed]

1995 (1)

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

1989 (1)

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

1988 (2)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988).
[PubMed]

1970 (1)

F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970).
[CrossRef] [PubMed]

1959 (1)

M. J. Blunt, “The vascular anatomy of the median nerve in the forearm and hand,” J. Anat. 93(1), 15–22 (1959).
[PubMed]

1952 (1)

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

Aiso, S.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Barbieri, B. B.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Beaumont, E.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Bergethon, P. R.

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Beutler, E.

E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006).
[CrossRef] [PubMed]

Binzoni, T.

M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
[CrossRef] [PubMed]

Blunt, M. J.

M. J. Blunt, “The vascular anatomy of the median nerve in the forearm and hand,” J. Anat. 93(1), 15–22 (1959).
[PubMed]

Bo Peng, Y.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Boas, D. A.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004).
[CrossRef] [PubMed]

Brieu, N.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Buchthal, F.

F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970).
[CrossRef] [PubMed]

Bunce, P. L.

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

Casavola, C.

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

Chen, D. K.

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Clervil, P. R.

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

Colier, W. N.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Coyle, S.

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

Cubeddu, R.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Curio, G.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

De Blasi, R. A.

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

de Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

Delpy, D. T.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Deng, H. P.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

Donzelli, G. P.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Drabkin, D. L.

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

Dubeau, S.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Ekstrom, L.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

El-Barrany, W. G.

W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
[CrossRef] [PubMed]

Endo, S.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Erb, M. K.

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Fantini, S.

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt. 48(10), D62–D73 (2009).
[CrossRef] [PubMed]

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. II. Continuous-wave results,” J. Opt. Soc. Am. A 23(9), 2119–2131 (2006).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Ferrari, M.

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
[CrossRef] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

Franceschini, M.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Franceschini, M. A.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004).
[CrossRef] [PubMed]

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

Fujino, T.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Fukui, Y.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Fukuzumi, S.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

George, J. S.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

Gore, J. C.

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

Gratton, E.

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

Hagains, C. E.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Halim, A. S.

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

Hammer, P. E.

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

Hampson, N. B.

N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988).
[PubMed]

Harper, R. M.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

Hoimes, M. L.

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

Hopman, M. T. E.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

Hori, E.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Imanishi, N.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Ishikawa, A.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Jarquin-Valdivia, A. A.

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

Kamino, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Kempf, F. C.

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

Kodama, T.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Kohl, M.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

Lambertsen, C. J.

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

Lebid, S.

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

Lesage, F.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Li, F. Z.

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

Liu, H.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Liu, H. S.

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

Mantulin, W. W.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Marei, A. G.

W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
[CrossRef] [PubMed]

Markham, C.

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

Martelli, F.

Martin, J. M.

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

Mathker, A.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Minabe, T.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Miyakawa, N.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Miyasaka, T.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Mochida, H.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Momose-Sato, Y.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Nadgir, S.

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

Nakajima, H.

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Niederhauser, B. D.

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

Nishijo, H.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Obrig, H.

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Oeseburg, B.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

O'Neill, R.

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

Ono, T.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Paunescu, L. A.

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

Peswani, D.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Piantadosi, C. A.

N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988).
[PubMed]

Pifferi, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Pratesi, S.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Quaresima, V.

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
[CrossRef] [PubMed]

Radhakrishnan, H.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Rahman, A. R. A.

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

Rasool, A. H. G.

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

Rector, D. M.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

Rinneberg, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Rogers, R. F.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

Rosenbaum, B. P.

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

Sacco, S.

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

Sasaki, S.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Sassaroli, A.

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

A. Sassaroli, F. Martelli, and S. Fantini, “Higher-order perturbation theory for the diffusion equation in heterogeneous media: application to layered and slab geometries,” Appl. Opt. 48(10), D62–D73 (2009).
[CrossRef] [PubMed]

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

A. Sassaroli, F. Martelli, and S. Fantini, “Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. II. Continuous-wave results,” J. Opt. Soc. Am. A 23(9), 2119–2131 (2006).
[CrossRef] [PubMed]

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Sato, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Satoru, K.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Schmalbruch, H.

F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970).
[CrossRef] [PubMed]

Schmidt, C. F.

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

Schwaber, J. S.

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

Senapati, A. K.

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

Shinomiya, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

Steinbrink, J.

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Syré, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Takamoto, K.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Takeuchi, M.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Taroni, P.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Tee, G. B. Y.

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

Thomas, F.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Tong, Y.

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

Torricelli, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Totaro, R.

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

Tran, A. H.

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Vallée, B.

W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
[CrossRef] [PubMed]

Van Beekvelt, M. C. P.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

van Engelen, B. G. M.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

Vanduffel, W.

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

Villringer, A.

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Vo, T. V.

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

Waalen, J.

E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

Wallace, D. J.

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

Wang, Y. K.

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

Wang, Y. X.

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

Ward, T.

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

Wevers, R. A.

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

Wray, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Yazawa, I.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Yi, X. G.

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

Zee, P.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Acta Physiol. Scand. (1)

F. Buchthal and H. Schmalbruch, “Contraction times and fibre types in intact human muscle,” Acta Physiol. Scand. 79(4), 435–452 (1970).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

M. K. Erb, D. K. Chen, A. Sassaroli, S. Fantini, and P. R. Bergethon, “Diffuse optical signals in response to peripheral nerve stimulation reflect skeletal muscle kinematics,” Biomed. Opt. Express . submitted.

Blood (1)

E. Beutler and J. Waalen, “The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration?” Blood 107(5), 1747–1750 (2006).
[CrossRef] [PubMed]

Brain Topogr. (1)

M. Takeuchi, E. Hori, K. Takamoto, A. H. Tran, K. Satoru, A. Ishikawa, T. Ono, S. Endo, and H. Nishijo, “Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation,” Brain Topogr. 22(3), 197–214 (2009).
[CrossRef] [PubMed]

Clin. Anat. (1)

F. Z. Li, X. G. Yi, H. S. Liu, Y. X. Wang, and Y. K. Wang, “The blood vessels and nerves of the dorsalis pedis flap,” Clin. Anat. 2(1), 9–16 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9(2), 343–346 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

T. V. Vo, P. E. Hammer, M. L. Hoimes, S. Nadgir, and S. Fantini, “Mathematical model for the hemodynamic response to venous occlusion measured with near-infrared spectroscopy in the human forearm,” IEEE Trans. Biomed. Eng. 54(4), 573–584 (2007).
[CrossRef] [PubMed]

J. Anat. (1)

M. J. Blunt, “The vascular anatomy of the median nerve in the forearm and hand,” J. Anat. 93(1), 15–22 (1959).
[PubMed]

J. Appl. Physiol. (2)

N. B. Hampson and C. A. Piantadosi, “Near infrared monitoring of human skeletal muscle oxygenation during forearm ischemia,” J. Appl. Physiol. 64(6), 2449–2457 (1988).
[PubMed]

C. J. Lambertsen, P. L. Bunce, D. L. Drabkin, and C. F. Schmidt, “Relationship of oxygen tension to hemoglobin oxygen saturation in the arterial blood of normal men,” J. Appl. Physiol. 4(12), 873–885 (1952).
[PubMed]

J. Biomed. Opt. (4)

V. Quaresima, S. Sacco, R. Totaro, and M. Ferrari, “Noninvasive measurement of cerebral hemoglobin oxygen saturation using two near infrared spectroscopy approaches,” J. Biomed. Opt. 5(2), 201–205 (2000).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, M. A. Franceschini, M. L. Hoimes, and S. Fantini, “Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy,” J. Biomed. Opt. 9(2), 413–420 (2004).
[CrossRef] [PubMed]

C. Casavola, L. A. Paunescu, S. Fantini, and E. Gratton, “Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation,” J. Biomed. Opt. 5(3), 269–276 (2000).
[CrossRef] [PubMed]

Y. Tong, J. M. Martin, A. Sassaroli, P. R. Clervil, P. R. Bergethon, and S. Fantini, “Fast optical signals in the peripheral nervous system,” J. Biomed. Opt. 11(4), 044014 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Pharmacol. Toxicol. Methods (1)

G. B. Y. Tee, A. H. G. Rasool, A. S. Halim, and A. R. A. Rahman, “Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time,” J. Pharmacol. Toxicol. Methods 50(1), 73–78 (2004).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

R. A. De Blasi, S. Fantini, M. A. Franceschini, M. Ferrari, and E. Gratton, “Cerebral and muscle oxygen saturation measurement by frequency-domain near-infra-red spectrometer,” Med. Biol. Eng. Comput. 33(2), 228–230 (1995).
[CrossRef] [PubMed]

Neurocrit. Care (1)

B. D. Niederhauser, B. P. Rosenbaum, J. C. Gore, and A. A. Jarquin-Valdivia, “A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation,” Neurocrit. Care 9(1), 31–36 (2008).
[CrossRef] [PubMed]

Neuroimage (6)

M. A. Franceschini and D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage 21(1), 372–386 (2004).
[CrossRef] [PubMed]

H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, and Y. Bo Peng, “Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation,” Neuroimage 40(1), 217–227 (2008).
[CrossRef] [PubMed]

D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neuroimage 14(5), 977–994 (2001).
[CrossRef] [PubMed]

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

J. Steinbrink, F. C. Kempf, A. Villringer, and H. Obrig, “The fast optical signal--robust or elusive when non-invasively measured in the human adult?” Neuroimage 26(4), 996–1008 (2005).
[CrossRef] [PubMed]

H. Radhakrishnan, W. Vanduffel, H. P. Deng, L. Ekstrom, D. A. Boas, and M. A. Franceschini, “Fast optical signal not detected in awake behaving monkeys,” Neuroimage 45(2), 410–419 (2009).
[CrossRef] [PubMed]

Neurosci. Lett. (2)

J. Steinbrink, M. Kohl, H. Obrig, G. Curio, F. Syré, F. Thomas, H. Wabnitz, H. Rinneberg, and A. Villringer, “Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head,” Neurosci. Lett. 291(2), 105–108 (2000).
[CrossRef] [PubMed]

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

M. Ferrari, T. Binzoni, and V. Quaresima, “Oxidative metabolism in muscle,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 677–683 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Plast. Reconstr. Surg. (1)

H. Nakajima, N. Imanishi, S. Fukuzumi, T. Minabe, Y. Fukui, T. Miyasaka, T. Kodama, S. Aiso, and T. Fujino, “Accompanying arteries of the lesser saphenous vein and sural nerve: anatomic study and its clinical applications,” Plast. Reconstr. Surg. 103(1), 104–120 (1999).
[CrossRef] [PubMed]

Proc. SPIE (5)

M. Franceschini, D. J. Wallace, B. B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, “Optical study of the skeletal muscle during exercise with a second-generation frequency-domain tissue oximeter,” Proc. SPIE 2979, 807–814 (1997).

D. K. Chen, Y. Tong, A. Sassaroli, P. R. Bergethon, and S. Fantini, “Fast optical response to electrical activation in peripheral nerves,” Proc. SPIE 6431, 643104 (2007).

S. Fantini, D. K. Chen, J. M. Martin, A. Sassaroli, and P. R. Bergethon, “Optical characterization of near-infrared signals associated with electrical stimulation of peripheral nerves,” Proc. SPIE 7174, 717401 (2009).

S. Lebid, T. Ward, R. O'Neill, C. Markham, and S. Coyle, “Towards dual modality nerve assessment using electrical and optical techniques,” Proc. SPIE 5855, 399–402 (2005).

M. C. P. Van Beekvelt, W. N. Colier, B. G. M. van Engelen, M. T. E. Hopman, R. A. Wevers, and B. Oeseburg, “Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy,” Proc. SPIE 3194, 133–144 (1998).

Surg. Radiol. Anat. (1)

W. G. El-Barrany, A. G. Marei, and B. Vallée, “Anatomic basis of vascularised nerve grafts: the blood supply of peripheral nerves,” Surg. Radiol. Anat. 21(2), 95–102 (1999).
[CrossRef] [PubMed]

Other (2)

M. Belau, M. Ninck, G. Hering, and T. Gisler, ” Non-Invasive Measurement of Skeletal Muscle Contraction with Time-Resolved Diffusing-Wave Spectroscopy,” Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010) paper BSuD70.

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing (Cambridge University Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for electrical stimulation and optical recordings on the median nerve. Optical recordings were performed with: (a) a two-wavelength (690 and 830 nm) tissue spectrometer in the vascular occlusion protocol (PMT: photomultiplier tube detector); (b) a spectral setup for broadband spectral measurements (over the wavelength range 650-900 nm) in the spectral characterization study (CCD: charge coupled device).

Fig. 2
Fig. 2

Experimental setup for electrical stimulation and optical recordings on the sural nerve, including an expanded schematic of the spatially resolved probe (right), where S1–S12 denote the twelve sequential positions of the illumination optical fibers and the black circle represents the fixed detector position.

Fig. 3
Fig. 3

Pictorial representation of the vascular displacement model showing (a) the rectangular modeled portion of a blood vessel passing through the optically probed volume and (b) the assumed reduced scattering spectrum for both the blood vessel and the surrounding tissue.

Fig. 4
Fig. 4

(a) Typical sensory nerve action potential (SNAP) and (b) typical optical signals at 690 and 830 nm measured on the sural nerve in response to electrical stimulation. Note the significantly different timescale of the SNAP and the optical response.

Fig. 5
Fig. 5

(a) Schematic diagram of the optical probe for spatially resolved measurements; (b)-(f) Optical responses to right sural nerve stimulation for the twelve source-detector pairs measured on subjects 1-5.

Fig. 6
Fig. 6

Experimental results of the venous occlusion protocol for subjects 6-9 (panels (a)-(d), respectively). In each panel, the top section shows the optical signals relative to tissue ∆I occl(t)/I 0, and the bottom section shows the maximum stimulated optical response to individual stimulations, δI stim(t max)/I(t 0), smoothed with a 20-point average. The four phases of each trial consists of: (phase 1) baseline, (phase 2) nerve stimulation with no venous occlusion, (phase 3) nerve stimulation during venous occlusion, and (phase 4) nerve stimulation after release of venous occlusion. The shaded area indicates the period of venous occlusion (phase 3).

Fig. 7
Fig. 7

Experimental results of the arterial occlusion protocol for subjects 6-9 (panels (a)-(d), respectively). In each panel, the top section shows the optical signals relative to tissue ∆I occl(t)/I 0, and the bottom section shows the maximum stimulated optical response to individual stimulations, δI stim(t max)/I(t 0), smoothed with a 20-point average. The four phases of each trial consists of: (phase 1) baseline, (phase 2) nerve stimulation with no arterial occlusion, (phase 3) nerve stimulation during arterial occlusion, and (phase 4) nerve stimulation after release of arterial occlusion. The shaded area indicates the period of arterial occlusion (phase 3).

Fig. 8
Fig. 8

Diffusion model assumptions (a) and results (b). (a) Assumed absorption spectra of background tissue (thick continuous and dashed lines) and blood vessel (thin line) corresponding to a hemoglobin concentration of 100 µM (tissue) or 2.3 mM (blood vessel), and a hemoglobin saturation of 75% or 40% (tissue) and 98% (blood vessel). (b) Results for the optical signal due to arterial vessel displacement from position r 1 to position r 2 ( Δ I b v ( r 1 r 2 ) / I r 1 , top lines) and vice versa ( Δ I b v ( r 2 r 1 ) / I r 2 , bottom lines), where r1 = (7,4,0) mm and position r2 = (7,5,0); solid and dashed lines refer to a background tissue saturation of 75% and 40%, respectively.

Fig. 9
Fig. 9

Modeling results for venous blood vessel displacement, Δ I b v ( r 1 r 2 ) / I r 1 (%) per 100 µm displacement along the y axis at z = 0 and (a) 5 mm depth and (b) 9 mm depth. Two wavelengths, 690 and 830 nm are represented as bold lines with no marker and thin lines with starred markers, respectively. 1x1x10 mm3, 0.5x0.5x10 mm3 and 0.1x0.1x10 mm3 blood vessel portion sizes are represented as solid, dashed and dotted lines, respectively.

Fig. 10
Fig. 10

Broadband spectra of optical signals measured (a) on a tissue-like phantom as a result of pushing the detector fiber by 250 µ m into the phantom in a contact configuration, and on subject 6 (b) as a result of pushing the detector fiber by 125 µm into the skin in a contact configuration, and in response to sural nerve stimulation under conditions of (c) fiber-skin contact and no visible hand motion, and (d) no contact between optical fiber and skin, and visible stimulation-induced hand motion. Continuous lines are experimental spectra, while dashed lines are average values across the spectrum (panels (a) and (b)), or modeled signals from blood vessel displacement, (panel (c) is due to a 110 µm displacement along y of a 2 mm diameter blood vessel centered at (2,9,0) mm under conditions of 100 µM concentration and 75% saturation of hemoglobin in tissue, and 2.3 mM concentration and 60% saturation of hemoglobin in the blood vessel (vein) and panel (d) is due to a 1 mm displacement along y of a 2 mm diameter blood vessel located at (2,13,0) mm under conditions of 100 µM concentration and 75% saturation of hemoglobin in tissue, and 2.3 mM concentration and 75% saturation of hemoglobin in the blood vessel (vein)).

Tables (1)

Tables Icon

Table 1 Summary of subjects, peripheral nerves examined, and experimental protocols performed

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ I b v ( r ) I 0 ~ l b v Δ μ a , b v + 1 2 ! l b v 2 Δ μ a , b v 2 1 3 ! l b v 3 Δ μ a , b v 3 + 1 4 ! l b v 4 Δ μ a , b v 4
Δ μ a , b v = Δ [ H b O 2 ] ε H b O 2 + Δ [ H b ] ε H b
Δ I b v ( r ) I 0 ~ P M N ( Δ μ a , b v ) = k = 0 M a k Δ μ a , b v k 1 + k = 1 N b k Δ μ a , b v k
Δ I b v ( r 1 r 2 ) I r 1 = [ Δ I b v ( r 2 ) I 0 Δ I b v ( r 1 ) I 0 ] I 0 I r 1

Metrics