Abstract

We present a new laser system and nonlinear microscope, designed for differential nonlinear microscopy. The microscope features time-correlated single photon counting of multiphoton fluorescence generated by an alternating pulse-train of orthogonally polarized pulses. The generated nonlinear signal is separated using home-built electronics. Results are presented on fluorescence-detected nonlinear absorption linear anisotropy (FDNALA) of chloroplasts in Asparagus Sprengerii Regel and of Congo Red-stained cellulose.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008).
    [CrossRef] [PubMed]
  2. R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
    [CrossRef] [PubMed]
  3. I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
    [CrossRef]
  4. A. Major, R. Cisek, and V. Barzda, “Femtosecond Yb:KGd(WO(4))(2) laser oscillator pumped by a high power fiber-coupled diode laser module,” Opt. Express 14(25), 12163–12168 (2006).
    [CrossRef] [PubMed]
  5. A. Major, V. Barzda, P. A. E. Piunno, S. Musikhin, and U. J. Krull, “An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements,” Opt. Express 14(12), 5285–5294 (2006).
    [CrossRef] [PubMed]
  6. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [CrossRef]
  7. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006).
    [CrossRef] [PubMed]
  8. G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
    [CrossRef]
  9. L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
    [CrossRef] [PubMed]
  10. P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
    [CrossRef]
  11. H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).
  12. R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003).
    [CrossRef] [PubMed]

2009 (1)

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008).
[CrossRef] [PubMed]

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

2006 (3)

2003 (1)

2002 (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

2000 (1)

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

1989 (1)

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

1962 (1)

H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Barzda, V.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Brown, R. M.

Bustamante, C.

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

Campagnola, P. J.

Carriles, R.

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Cheng, P.-C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Chu, S.-W.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Cisek, R.

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

A. Major, R. Cisek, and V. Barzda, “Femtosecond Yb:KGd(WO(4))(2) laser oscillator pumped by a high power fiber-coupled diode laser module,” Opt. Express 14(25), 12163–12168 (2006).
[CrossRef] [PubMed]

Espie, G. S.

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

Finzi, L.

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

Fleming, G. R.

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Garab, G.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

Holtom, G. R.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Hoover, E. E.

Horvath, G. V.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

Juang, C.-B.

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Krueger, B. P.

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

Krull, U. J.

Levine, M.

H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).

Lin, B.-L.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Major, A.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Millard, A. C.

Musikhin, S.

Pay, A.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

Piunno, P. A. E.

Pomozi, I.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

Prent, N.

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

Puchtler, H.

H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).

Sheetz, K. E.

Spencer, L.

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

Squier, J. A.

Steinbach, G.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

Sun, C.-K.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Sweat, F.

H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).

Walla, P. J.

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Yom, J.

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

Zigmantas, D.

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

Zsiros, O.

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

Cytometry A (1)

G. Steinbach, I. Pomozi, O. Zsiros, A. Pay, G. V. Horvath, and G. Garab, “Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscopy,” Cytometry A 73A(3), 202–208 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au,, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

J. Hist. Cyt (1)

H. Puchtler, F. Sweat, and M. Levine, “On the binding of Congo red by amyloid,” J. Hist. Cyt 10(3), 355–364 (1962).

J. Phys. Chem. B (1)

P. J. Walla, J. Yom, B. P. Krueger, and G. R. Fleming, “Two-photon excitation spectrum of light-harvesting complex II and fluorescence upconversion after one- and two-photon excitation of the carotenoids,” J. Phys. Chem. B 104(19), 4799–4806 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P.-C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Photosynth. Res. (1)

R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2-3), 111–141 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Finzi, C. Bustamante, G. Garab, and C.-B. Juang, “Direct observation of large chiral domains in chloroplast thylakoid membranes by differential polarization microscopy,” Proc. Natl. Acad. Sci. U.S.A. 86(22), 8748–8752 (1989).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the laser cavity (a) and microscope setup (b). M1, M2 – curved mirrors; SESAM – saturable absorber mirror; OC – output coupler; GTI – Gires-Tournois dispersion compensation mirrors; ISO – optical isolator; DM – dichroic mirror; S – 4% reflection glass sampler; F – RG665 and 3x SP750 filters; BS – polarizing cube beamsplitter; SF – spatial filter; MCP-PMT – microchannel plate photomultiplier tube; PD 1 – photodiode for stop signal; PD 2 – photodiode for routing signal; TL – tube lens.

Fig. 2
Fig. 2

Fluorescence measurements from chloroplasts in a single cell of Asparagus Sprengerii Regel. (a,b) Fluorescence intensity images, obtained simultaneously. The arrows indicate the polarization direction. Chloroplasts were labeled 1 through 4 for comparison purposes in the text. (c) FDNALA of the fluorescence signal, defined as (I1-I2)/(I1 + I2)max.

Fig. 3
Fig. 3

Fluorescence intensity from Congo Red stained corn stalk. (a,b) Fluorescence intensity images, obtained simultaneously. The arrows indicate the polarization direction. (c) FDNALA of the signal, defined as (I1-I2)/(I1 + I2)max. Maximum FDNALA occurs when the polarization is lined up with the cellulose fibers in the corn stalk.

Metrics