Abstract

Dynamic correction of monochromatic aberrations of the eye is known to affect the accommodation response to a step change in stimulus vergence. We used an adaptive optics system to determine how the temporal location of the correction affects the response. The system consists of a Shack-Hartmann sensor sampling at 20 Hz and a 37-actuator piezoelectric deformable mirror. An extra sensing channel allows for an independent measure of the accommodation level of the eye. The accommodation response of four subjects was measured during a +/− 0.5 D step change in stimulus vergence whilst aberrations were corrected at various time locations. We found that continued correction of aberrations after the step change decreased the gain for disaccommodation, but increased the gain for accommodation. These results could be explained based on the initial lag of accommodation to the stimulus and changes in the level of aberrations before and after the stimulus step change. Future considerations for investigations of the effect of monochromatic aberrations on the dynamic accommodation response are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
    [CrossRef] [PubMed]
  2. G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989).
    [CrossRef] [PubMed]
  3. B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19(5), 833–839 (2002).
    [CrossRef] [PubMed]
  4. L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
    [CrossRef]
  5. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
    [CrossRef] [PubMed]
  6. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [CrossRef]
  7. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).
  8. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55(21), 3425–3467 (2008).
    [CrossRef]
  9. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
    [CrossRef] [PubMed]
  10. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
    [CrossRef] [PubMed]
  11. S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
    [CrossRef] [PubMed]
  12. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
    [CrossRef] [PubMed]
  13. M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002).
    [CrossRef] [PubMed]
  14. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Dual wavefront sensing channel monocular adaptive optics system for accommodation studies,” Opt. Express 17(20), 18229–18240 (2009).
    [CrossRef] [PubMed]
  15. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  16. F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960).
    [PubMed]
  17. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [CrossRef] [PubMed]
  18. C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006).
    [CrossRef] [PubMed]
  19. S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
    [CrossRef] [PubMed]
  20. J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
    [CrossRef]
  21. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus,” Opt. Lett. 34(21), 3274–3276 (2009).
    [CrossRef] [PubMed]
  22. G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007).
    [CrossRef] [PubMed]
  23. R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
    [CrossRef] [PubMed]
  24. H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
    [CrossRef] [PubMed]
  25. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
    [CrossRef] [PubMed]
  26. S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
    [CrossRef] [PubMed]
  27. S. S. Chin, “Adaptive optics, aberration dynamics and accommodation control,” PhD Thesis, University of Bradford (2009).
  28. K. J. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, W. N. Charman ed. (Macmillan, London, UK, 1991).
  29. J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986).
    [CrossRef] [PubMed]
  30. T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
    [CrossRef] [PubMed]
  31. R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
    [CrossRef] [PubMed]
  32. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
    [CrossRef] [PubMed]
  33. P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
    [CrossRef] [PubMed]
  34. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [CrossRef] [PubMed]
  35. J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
    [CrossRef] [PubMed]

2010 (1)

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

2009 (8)

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Dual wavefront sensing channel monocular adaptive optics system for accommodation studies,” Opt. Express 17(20), 18229–18240 (2009).
[CrossRef] [PubMed]

S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus,” Opt. Lett. 34(21), 3274–3276 (2009).
[CrossRef] [PubMed]

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[CrossRef] [PubMed]

S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
[CrossRef] [PubMed]

2008 (4)

K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55(21), 3425–3467 (2008).
[CrossRef]

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
[CrossRef] [PubMed]

2007 (2)

G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007).
[CrossRef] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

2006 (3)

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006).
[CrossRef] [PubMed]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

2002 (4)

M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19(5), 833–839 (2002).
[CrossRef] [PubMed]

2001 (1)

1997 (1)

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[CrossRef] [PubMed]

1989 (1)

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989).
[CrossRef] [PubMed]

1986 (1)

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986).
[CrossRef] [PubMed]

1974 (1)

J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
[CrossRef]

1960 (1)

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960).
[PubMed]

1951 (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[CrossRef] [PubMed]

Allen, P. M.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Aragón, J. L.

Artal, P.

Asbell, P. A.

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

Atchison, D. A.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
[CrossRef] [PubMed]

Badar, M.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

Bharadwaj, S. R.

S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006).
[CrossRef] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[CrossRef] [PubMed]

Birt, B. J.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
[CrossRef] [PubMed]

Bobier, W. R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

Borgovan, T.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Bouman, M. A.

J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
[CrossRef]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

Burke, S.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Calver, R. I.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960).
[PubMed]

Candy, T. R.

G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007).
[CrossRef] [PubMed]

Castro, J. J.

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

Charman, W. N.

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989).
[CrossRef] [PubMed]

Chateau, N.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

Chen, L.

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23(1), 1–8 (2006).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

Chin, S. S.

Decker, K. E.

Dorronsoro, C.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

Fan, V. C.

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

Fernández, E. J.

E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[CrossRef] [PubMed]

Fincham, E. F.

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[CrossRef] [PubMed]

Gambra, E.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

Goldstone, R. N.

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

Gray, L. S.

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Guo, H.

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
[CrossRef] [PubMed]

Hampson, K. M.

Hardy, C.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Hita, E.

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

Hofer, H.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

Hung, G. K.

M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002).
[CrossRef] [PubMed]

Irving, E. L.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

Jiménez, J. R.

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

Jiménez, R.

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

Khosroyani, M.

M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002).
[CrossRef] [PubMed]

Kotulak, J. C.

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986).
[CrossRef] [PubMed]

Krueger, R. R.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

Kruger, P.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Kruger, P. B.

Mallen, E. A. H.

Manahilov, V.

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Manzanera, S.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[CrossRef] [PubMed]

Marcos, S.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Meyers, J. P.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

Mucke, S.

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Nelson, P.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

O’Leary, D. J.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Osuobeni, E.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Price, H.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Radhakrishnan, H.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Rae, S. M.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Rocha, K. M.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19(5), 833–839 (2002).
[CrossRef] [PubMed]

Rucker, F.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Rutman, H.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Sailoganathan, A.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Sawides, L.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

Schmidt, N.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Schor, C. M.

S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006).
[CrossRef] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[CrossRef] [PubMed]

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986).
[CrossRef] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Seidel, D.

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Shah, R.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Singer, B.

Stark, L.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Strang, N. C.

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Suryakumar, R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

Swanson, W.

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

Theagarayan, B. P.

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Tondel, G. M.

G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007).
[CrossRef] [PubMed]

Ukai, K.

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[CrossRef] [PubMed]

Vabre, L.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

van de Kraats, J.

J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
[CrossRef]

van der Wildt, J.

J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
[CrossRef]

Vedamurthy, I.

S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
[CrossRef] [PubMed]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

Walsh, G.

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989).
[CrossRef] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Westheimer, G.

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960).
[PubMed]

Williams, D. R.

Wilson, B. J.

Yamada, T.

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[CrossRef] [PubMed]

Yildiz, E. H.

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

Biol. Cybern. (1)

J. C. Kotulak and C. M. Schor, “A computational model of the error detector of human visual accommodation,” Biol. Cybern. 54(3), 189–194 (1986).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthalmol. 35(7), 381–393 (1951).
[CrossRef] [PubMed]

Bull. Math. Biol. (1)

M. Khosroyani and G. K. Hung, “A dual-mode dynamic model of the human accommodation system,” Bull. Math. Biol. 64(2), 285–299 (2002).
[CrossRef] [PubMed]

Clin. Exp. Optom. (1)

S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[CrossRef] [PubMed]

Curr. Biol. (1)

S. Mucke, V. Manahilov, N. C. Strang, D. Seidel, and L. S. Gray, “New type of perceptual suppression during dynamic ocular accommodation,” Curr. Biol. 18(13), R555–R556 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

P. M. Allen, H. Radhakrishnan, S. M. Rae, R. I. Calver, B. P. Theagarayan, P. Nelson, E. Osuobeni, A. Sailoganathan, H. Price, and D. J. O’Leary, “Aberration control and vision training as an effective means of improving accommodation in individuals with myopia,” Invest. Ophthalmol. Vis. Sci. 50(11), 5120–5129 (2009).
[CrossRef] [PubMed]

G. M. Tondel and T. R. Candy, “Human infants’ accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Vis. Sci. 48(2), 949–956 (2007).
[CrossRef] [PubMed]

S. R. Bharadwaj, I. Vedamurthy, and C. M. Schor, “Short-term adaptive modification of dynamic ocular accommodation,” Invest. Ophthalmol. Vis. Sci. 50(7), 3520–3528 (2009).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[CrossRef] [PubMed]

J. Mod. Opt. (3)

J. van der Wildt, M. A. Bouman, and J. van de Kraats, “The effect of anticipation on the transfer function of the human lens system,” J. Mod. Opt. 21(11), 843–860 (1974).
[CrossRef]

K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55(21), 3425–3467 (2008).
[CrossRef]

L. Stark, P. Kruger, F. Rucker, W. Swanson, N. Schmidt, C. Hardy, H. Rutman, T. Borgovan, S. Burke, M. Badar, and R. Shah, “Potential signal to accommodation from the Stiles-Crawford effect and ocular monochromatic aberrations,” J. Mod. Opt. 56(20), 2203–2216 (2009).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Physiol. (1)

F. W. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” J. Physiol. 151, 285–295 (1960).
[PubMed]

J. Refract. Surg. (2)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

R. N. Goldstone, E. H. Yildiz, V. C. Fan, and P. A. Asbell, “Changes in higher order wavefront aberrations after contact lens corneal refractive therapy and LASIK surgery,” J. Refract. Surg. 26(5), 348–355 (2010).
[CrossRef] [PubMed]

J. Vis. (4)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[CrossRef] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4, 1–15 (2009).
[CrossRef] [PubMed]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 16, 272–280 (2004).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[CrossRef] [PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (2)

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[CrossRef] [PubMed]

G. Walsh and W. N. Charman, “The effect of defocus on the contrast and phase of the retinal image of a sinusoidal grating,” Ophthalmic Physiol. Opt. 9(4), 398–404 (1989).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

J. R. Jiménez, J. J. Castro, R. Jiménez, and E. Hita, “Interocular differences in higher-order aberrations on binocular visual performance,” Optom. Vis. Sci. 85(3), 174–179 (2008).
[CrossRef] [PubMed]

Vision Res. (4)

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “Pulse-step models of control strategies for dynamic ocular accommodation and disaccommodation,” Vision Res. 46(1-2), 242–258 (2006).
[CrossRef] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[CrossRef] [PubMed]

H. Guo, D. A. Atchison, and B. J. Birt, “Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations,” Vision Res. 48(17), 1804–1811 (2008).
[CrossRef] [PubMed]

Other (2)

S. S. Chin, “Adaptive optics, aberration dynamics and accommodation control,” PhD Thesis, University of Bradford (2009).

K. J. Ciuffreda, “Accommodation and its anomalies,” in Vision and Visual Dysfunction, W. N. Charman ed. (Macmillan, London, UK, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Adaptive optics system. Numbered arrows indicate the path of the measured beam that passes onto the deformable mirror before reaching the sensor.

Fig. 2
Fig. 2

Summary of the experimental conditions. Either the subjects aberrations were left uncorrected (SO), or a correction was applied after the step (CAS), before the step (CBS), throughout the experimental run (CT), or during the latency period (CDL). Only the positive step in vergence is shown for clarity.

Fig. 3
Fig. 3

Data analysis procedure of a typical response of subject EM to a + 0.5 D step change in vergence. (a) For starting level and latency. The starting level is the average of the accommodation level 250 ms before the step. The latency is obtained from a Boltzmann sigmoidal fit. (b) For overshoot and gain. The response is fitted to a damped sinusoid. The overshoot is the difference between the final level and the peak of the primary overshoot. The gain is the difference between the starting level and final level divided by the step size. Dashed lines represent the fitted curves.

Fig. 4
Fig. 4

Data analysis procedure of a typical response of subject YP to a + 0.5 D step change. The latency is found using a Boltzmann sigmoidal fit. The gain is found using a damped sinusoidal fit. In this case there is no overshoot in the response. Dashed lines represent the fitted curves.

Fig. 5
Fig. 5

The rms wavefront error for each subject without and with correction by the DM. The average across subjects is also shown. Error bars indicate ± S.D.

Fig. 6
Fig. 6

The AR for each condition and each step change in vergence averaged across subjects. (a) The responses to the + 0.5 D step, i.e. disaccommodation. (b) The responses to the −0.5 D step, i.e. accommodation. The responses have been shifted so they all start at approximately the same level for comparison of the gains. Also shown is the ‘ideal’ response.

Fig. 7
Fig. 7

The average gain for each condition for each vergence change. (a) Gain for responses to the + 0.5 D step, i.e. disaccommodation. (b) Gain for responses to the −0.5 D step, i.e. accommodation. * indicates significant differences (p < 0.0125).

Fig. 8
Fig. 8

a) The average AR across all conditions and subjects for disaccommodation and accommodation. b) The average AR across conditions for disaccommodation and accommodation for each subject purposes. The demand is also shown.

Fig. 9
Fig. 9

Illustration explaining the changes observed in the gain for the CAS condition. (a) Represents the defocus level in the DM channel for the disaccommodation case. The DM introduces a + 0.5 D step and then the eye disaccommodates to reduce the blur. Owing to changes in the depth of focus due to correction of aberrations by the DM, the resting level of the eye is closer to the stimulus level than initially. This results in a reduced gain. (b) For accommodation the gain increases owing to the initial lag of the accommodation system.

Fig. 10
Fig. 10

Change in the rms wavefront error for disaccommodation and accommodation averaged across subjects and conditions. Aberration terms up to and including sixth radial order, excluding tip, tilt and defocus have been used.

Tables (1)

Tables Icon

Table 1 Comparison of properties of disaccommodation and accommodation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D e f D i o p = 4 3 C 2 0 R 2 ,
A c ( t i ) = 4 3 C 2 0 ( t i ) 12 5 C 4 0 ( t i ) R 2 ,
A R S i g ( t i ) = y 1 + y 2 y 1 1 + exp [ ( y 3 t i ) / y 4 ] ,
A R D S ( t i ) = z 1 + [ z 2 exp ( τ t i ) cos ( ω t i φ ) ] ,
G = A R s t a r t z 1 A s t e p ,

Metrics