Abstract

An optimal excitation beam shape is necessary to perform reliable flow cytometric analysis but has so far not been implemented in a photonic-microfluidic integrated (i.e. optofluidic) device. We have achieved this feature by integrating a 1D lens system with planar waveguides and microfluidic channel on a substrate using one patterning material via a one-shot process. In this paper, we report the method of design and the performance of specifically formed excitation regions shaped to be ideal for reducing double detections, improving SNR, and for reliable detection in a flow cytometry application. Demonstration of different sizes via changes to lens design shows the ability to control the width of the shaped beam according to a targeted detection.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000).
    [CrossRef] [PubMed]
  2. S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003).
    [CrossRef] [PubMed]
  3. M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
    [CrossRef] [PubMed]
  4. S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
    [CrossRef] [PubMed]
  5. J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).
  6. F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
    [CrossRef] [PubMed]
  7. D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
    [CrossRef] [PubMed]
  8. A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
    [CrossRef] [PubMed]
  9. B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005).
    [CrossRef] [PubMed]
  10. M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
    [CrossRef] [PubMed]
  11. N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
    [CrossRef] [PubMed]
  12. A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
    [CrossRef] [PubMed]
  13. A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
    [CrossRef] [PubMed]
  14. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
    [CrossRef] [PubMed]
  15. B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “A microfluidic-photonic-integrated device with enhanced excitation power density,” Proc. SPIE 7555, (2010).
  16. B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
    [CrossRef] [PubMed]
  17. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
    [CrossRef] [PubMed]
  18. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
    [CrossRef] [PubMed]
  19. K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
    [CrossRef] [PubMed]
  20. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
    [CrossRef] [PubMed]
  21. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [CrossRef] [PubMed]
  22. S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
    [CrossRef]
  23. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
    [CrossRef]
  24. S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
    [CrossRef]
  25. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [CrossRef] [PubMed]
  26. H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, 2003).
  27. isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
    [CrossRef]
  28. C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).
  29. A. Yariv, and P. Yeh, Photonics, (Oxford University Press, 2007).
  30. Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
    [CrossRef]
  31. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
    [CrossRef] [PubMed]

2010 (1)

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

2009 (2)

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
[CrossRef]

2007 (1)

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

2005 (4)

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005).
[CrossRef] [PubMed]

S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef]

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

2004 (4)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
[CrossRef] [PubMed]

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

2003 (5)

S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003).
[CrossRef] [PubMed]

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

2001 (3)

F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
[CrossRef] [PubMed]

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

2000 (1)

R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

1987 (1)

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Arnold, F. H.

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

Ashcroft, R. G.

R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000).
[CrossRef] [PubMed]

Backhouse, C. J.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Baumgarth, N.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Bigos, M.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Bliss, C. L.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Bradley, D. D. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Cao, X.

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Chabinyc, M. L.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Chattopadhyay, P. K.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
[CrossRef] [PubMed]

Chen, L.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Cheng, H. L.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Chiu, D. T.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Choi, K.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Chou, H. P.

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

Christian, J. F.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Chun, K.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Chung, D. S.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Culbertson, C. T.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Daar, A. S.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Demello, A. J.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Demello, J. C.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Detels, R.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Edwards, B. S.

F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
[CrossRef] [PubMed]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[CrossRef] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Fahey, J. L.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Friis, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Fu, A. Y.

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Gao, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Giorgi, J. V.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Goranovic, G.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Hahn, J. H.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

Herman, O. C.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Herzenberg, L. A.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Hofmann, O.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Hsiung, S.-K.

S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef]

Hu, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Hultin, L. E.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Ibrahim, S. F.

S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003).
[CrossRef] [PubMed]

Jacobson, S. C.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Jager, G. C.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Jeong, Y.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Karger, A. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Kim, J.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Kim, K. C.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Kowpak, T.

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

Koyama, R.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Kuckuck, F. W.

F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[CrossRef] [PubMed]

Larsen, U. D.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Lee, G.-B.

S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef]

Lee, L. P.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Lei, G.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Lim, K.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

Lin, C.-H.

S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef]

Lin, M.

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Lopez, P. A.

R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000).
[CrossRef] [PubMed]

Luo, G.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Mabey, D.

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

Manz, A.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Martin, D. K.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

McClain, M. A.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

McDonald, J. C.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

McMullin, J. N.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Mitsuyasu, R. T.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[CrossRef] [PubMed]

Mu, C.

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Nast, S.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Nicholson, J. K. A.

B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005).
[CrossRef] [PubMed]

Nozaki, T.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Pamme, N.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Park, S.

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Parks, D. R.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Peeling, R. W.

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Perfetto, S. P.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
[CrossRef] [PubMed]

Perkins, M. D.

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

Poulsen, C. R.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Qiu, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Quake, S. R.

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Ramsey, J. M.

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

Ren, K.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Ro, K. W.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

Robertson, B. H.

B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005).
[CrossRef] [PubMed]

Roederer, M.

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
[CrossRef] [PubMed]

Seo, J.

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Shim, B. C.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

Singer, P. A.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Sklar, L. A.

F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
[CrossRef] [PubMed]

Smith, A. C.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Smith, D. C.

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Spence, C.

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

Stovel, R. T.

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

Stroock, A. D.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Telleman, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Thorsteinsdóttir, H.

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Ustianowski, A.

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

van den Engh, G.

S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003).
[CrossRef] [PubMed]

Wang, L.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Wang, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Watts, B. R.

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

Whitesides, G. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, “Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems,” Appl. Opt. 42(19), 4072–4079 (2003).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

Xiao, G.

Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
[CrossRef]

Xu, C.

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

Yao, B.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Zhang, Z.

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
[CrossRef]

Zhao, P.

Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
[CrossRef]

Zhu, S.

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

Anal. Chem. (4)

M. A. McClain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometry of Escherichia coli on Microfluidic Devcies,” Anal. Chem. 73(21), 5334–5338 (2001).
[CrossRef] [PubMed]

A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Anal. Chem. 74(11), 2451–2457 (2002).
[CrossRef] [PubMed]

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[CrossRef] [PubMed]

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Annu. Rev. Public Health (1)

B. H. Robertson and J. K. A. Nicholson, “New microbiology tools for public health and their implications,” Annu. Rev. Public Health 26(1), 281–302 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Curr. Opin. Biotechnol. (1)

S. F. Ibrahim and G. van den Engh, “High-speed cell sorting: fundamentals and recent advances,” Curr. Opin. Biotechnol. 14(1), 5–12 (2003).
[CrossRef] [PubMed]

Cytometry (2)

M. Bigos, N. Baumgarth, G. C. Jager, O. C. Herman, T. Nozaki, R. T. Stovel, D. R. Parks, and L. A. Herzenberg, “Nine color eleven parameter immunophenotyping using three laser flow cytometry,” Cytometry 36(1), 36–45 (1999).
[CrossRef] [PubMed]

F. W. Kuckuck, B. S. Edwards, and L. A. Sklar, “High throughput flow cytometry,” Cytometry 44(1), 83–90 (2001).
[CrossRef] [PubMed]

Electrophoresis (1)

S.-K. Hsiung, C.-H. Lin, and G.-B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibres and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef]

J. Immunol. (1)

J. V. Giorgi, J. L. Fahey, D. C. Smith, L. E. Hultin, H. L. Cheng, R. T. Mitsuyasu, and R. Detels, “Early Effects of HIV on CD4 Lyphocytes in Vivo,” J. Immunol. 134, 3725–3730 (1987).

J. Immunol. Methods (1)

R. G. Ashcroft and P. A. Lopez, “Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC),” J. Immunol. Methods 243(1-2), 13–24 (2000).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

S. Park, Y. Jeong, J. Kim, K. Choi, K. C. Kim, D. S. Chung, and K. Chun, “Fabrication of Poly(dimethylsiloxane) Microlens for Laser-Induced Fluorescence Detection,” Jpn. J. Appl. Phys. 45(No. 6B), 5614–5617 (2006).
[CrossRef]

Lab Chip (8)

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. C. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6(2), 213–217 (2006).
[CrossRef] [PubMed]

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3(1), 22–27 (2003).
[CrossRef] [PubMed]

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Macromol. Mater. Eng. (1)

isT. Kowpak, B. R. Watts, Z. Zhang, S. Zhu, and C. Xu, “Fabrication of Photonic/Microfluidic Integrated Devices Using an Epoxy Photoresist,” Macromol. Mater. Eng. 295(6), 559–565 (2010).
[CrossRef]

Nat. Genet. (1)

A. S. Daar, H. Thorsteinsdóttir, D. K. Martin, A. C. Smith, S. Nast, and P. A. Singer, “Top ten biotechnologies for improving health in developing countries,” Nat. Genet. 32(2), 229–232 (2002).
[CrossRef] [PubMed]

Nat. Rev. Immunol. (1)

S. P. Perfetto, P. K. Chattopadhyay, and M. Roederer, “Seventeen-colour flow cytometry: unravelling the immune system,” Nat. Rev. Immunol. 4(8), 648–655 (2004).
[CrossRef] [PubMed]

Nat. Rev. Microbiol. (1)

D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Diagnostics for the developing world,” Nat. Rev. Microbiol. 2(3), 231–240 (2004).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

Z. Zhang, P. Zhao, and G. Xiao, “The fabrication of polymer microfluidic devices using a solid-to-solid interfacial polyaddition,” Polymer (Guildf.) 50(23), 5358–5361 (2009).
[CrossRef]

Proc. SPIE (1)

C. Mu, Z. Zhang, M. Lin, X. Cao, and Z. Zhang, “Microchip-based flow cytometry for Effective Detection and Count,” Proc. SPIE 7386, E1–E9 (2009).

Sens. Actuators B Chem. (1)

J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B Chem. 99(2-3), 615–622 (2004).
[CrossRef]

Other (3)

A. Yariv, and P. Yeh, Photonics, (Oxford University Press, 2007).

H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, 2003).

B. R. Watts, T. Kowpak, Z. Zhang, C. Q. Xu, and S. Zhu, “A microfluidic-photonic-integrated device with enhanced excitation power density,” Proc. SPIE 7555, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram depicting Gaussian beam focusing.

Fig. 2
Fig. 2

Device design and layout. (a) 3D concept drawing. (b) Photomask design showing microfluidic integration with optical elements. (c) Detailed schematic of the lens system.

Fig. 3
Fig. 3

Simulation results for 3.6 μm lens system and 10 μm lens system.

Fig. 4
Fig. 4

Schematic of testing setup (top) with a picture of actual testing setup (bottom).

Fig. 5
Fig. 5

Picture of the fabricated device with fluid tubes (a), close image of the integrated lens area (b) and cross-section of the device (c).

Fig. 6
Fig. 6

Captured images of fluorescence in the microchannel. a) Device without beam shaping with back light (without filter). b) Detail of beam from device without lens system (with filter). c) Device with 3.6 μm lens system and back light (with filter). d) Detail of beam from device with 3.6 μm lens system (with filter).

Fig. 7
Fig. 7

Comparison between simulation and actual results for 10 μm device.

Fig. 8
Fig. 8

Contour plots of the beam within the channel for a no lens system (a), the 3.6 μm lens system (c) and the 10 μm lens system (e) along with the 3D representation of the beam intensity profile within the channel for no lens (b), 3.6 μm (d), and 10 μm (f) lens systems.

Fig. 9
Fig. 9

Plot showing the maximum intensity (open points) and FWHM (closed points) of each beam as a function of cross-channel position.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w 1 2 = f 2 z o 2 + ( d o f ) 2 w o 2
z = c r 2 1 + 1 ( 1 + k ) c 2 r 2

Metrics