Abstract

Lensless on-chip imaging is a promising technique to count and monitor cells and micro-objects in liquid sample. In this paper we apply this technique to the observation of µL sample containing bacteria evaporated onto a microscope slide. Compared with previously reported techniques, a large improvement in signal to noise ratio is obtained due to the presence of a few μm thick wetting film creating a micro-lens on top of each bacteria. In these conditions, standard CMOS sensor are able to detect micro-objects as small as few μm, e.g. E.coli and Bacillus subtilis bacteria and 1 μm polymer beads with a large signal to noise ratio of 45 ± 10. An overall detection efficiency of 85 ± 7% and a co-localization error of σ1D = 1.1μm compared with reference fluorescence microscopy images are achieved. This novel technique will be used as a pre-positioning tool prior to other optical identification methods, e.g. Raman spectroscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
    [CrossRef] [PubMed]
  2. R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
    [CrossRef] [PubMed]
  3. M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
    [CrossRef] [PubMed]
  4. J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
    [CrossRef]
  5. R. Mariella., “Sample preparation: the weak link in microfluidics-based biodetection,” Biomed. Microdevices 10(6), 777–784 (2008).
    [CrossRef] [PubMed]
  6. T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
    [CrossRef] [PubMed]
  7. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
    [CrossRef] [PubMed]
  8. O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
    [PubMed]
  9. M.-S. Kim, T. Scharf, and H. P. Herzig, “Small-size microlens characterization by multiwavelength high-resolution interference microscopy,” Opt. Express 18(14), 14319–14329 (2010).
    [CrossRef] [PubMed]
  10. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
    [CrossRef] [PubMed]

2010

2009

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

2008

R. Mariella., “Sample preparation: the weak link in microfluidics-based biodetection,” Biomed. Microdevices 10(6), 777–784 (2008).
[CrossRef] [PubMed]

2001

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

1998

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Allouch, P.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Ami, D.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Burton, R.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Choo-Smith, L. P.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Christesen, S.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
[CrossRef]

Deufel, T.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Doglia, S. M.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Emge, D.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
[CrossRef]

Erlinger, A.

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

Goodacre, R.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Guicheteau, J.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
[CrossRef]

Harz, M.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Herzig, H. P.

Isikman, S. O.

Kaderbhai, N.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Kell, D. B.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Khademhosseinieh, B.

Kiehntopf, M.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Kim, M.-S.

Kirschner, C.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Mainfait, M.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Maquelin, K.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Mariella, R.

R. Mariella., “Sample preparation: the weak link in microfluidics-based biodetection,” Biomed. Microdevices 10(6), 777–784 (2008).
[CrossRef] [PubMed]

Mudanyali, O.

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

Naumann, D.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Ngo Thi, N. A.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Oh, C.

Orsini, F.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Ozcan, A.

C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5), 4717–4726 (2010).
[CrossRef] [PubMed]

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

Pina, P.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Popp, J.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Puppels, G. J.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Rooney, P. J.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Rösch, P.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Sandt, C.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Scharf, T.

Seo, S.

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Sockalingum, G. D.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

Stöckel, S.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Straube, E.

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

Su, T. W.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

Su, T.-W.

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

Timmins, E. M.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Tripathi, A.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
[CrossRef]

Tseng, D.

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

Tseng, D. K.

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Woodward, A. M.

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Biomed. Microdevices

R. Mariella., “Sample preparation: the weak link in microfluidics-based biodetection,” Biomed. Microdevices 10(6), 777–784 (2008).
[CrossRef] [PubMed]

Biotechnol. Bioeng.

T. W. Su, S. Seo, A. Erlinger, and A. Ozcan, “High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip,” Biotechnol. Bioeng. 102(3), 856–868 (2009).
[CrossRef] [PubMed]

J Biophotonics

M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, E. Straube, T. Deufel, and J. Popp, “Direct analysis of clinical relevant single bacterial cells from cerebrospinal fluid during bacterial meningitis by means of micro-Raman spectroscopy,” J Biophotonics 2(1-2), 70–80 (2009).
[CrossRef] [PubMed]

J. Clin. Microbiol.

C. Kirschner, K. Maquelin, P. Pina, N. A. Ngo Thi, L. P. Choo-Smith, G. D. Sockalingum, C. Sandt, D. Ami, F. Orsini, S. M. Doglia, P. Allouch, M. Mainfait, G. J. Puppels, and D. Naumann, “Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study,” J. Clin. Microbiol. 39(5), 1763–1770 (2001).
[CrossRef] [PubMed]

J. Raman Spectrosc.

J. Guicheteau, S. Christesen, D. Emge, and A. Tripathi, “Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging,” J. Raman Spectrosc. (2010), to be published.
[CrossRef]

J. Vis. Exp.

O. Mudanyali, A. Erlinger, S. Seo, T.-W. Su, D. Tseng, and A. Ozcan, “Lensless on-chip imaging of cells provides a new tool for high-throughput cell-biology and medical diagnostics,” J. Vis. Exp. 34, (2009).
[PubMed]

Lab Chip

S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009).
[CrossRef] [PubMed]

Microbiology

R. Goodacre, E. M. Timmins, R. Burton, N. Kaderbhai, A. M. Woodward, D. B. Kell, and P. J. Rooney, “Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks,” Microbiology 144(5), 1157–1170 (1998).
[CrossRef] [PubMed]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the thin wetting film lensless imaging setup (not to scale).

Fig. 2
Fig. 2

Intensity profiles and image of E.coli bacteria detected in (a) a 1µl droplet using a 100µm pinhole and in (b) a thin wetting film (without pinhole). On the intensity profiles, the blue bold line corresponds to the mean value. The green bold line in (a) is the calculated intensity profile of a holographic pattern. Amplitude and mean value of the calculated profile are normalised with the measurements.

Fig. 3
Fig. 3

Image of 1μm diameter beads obtained with a x20/0.45NA transmission microscope (Olympus Provis AX70) as a function of the focal depth Z (front focus measurement, Z = 0 corresponds to the object plane). (a) In air after complete droplet evaporation. (b, c, d and e) In the presence of a thin wetting film. (c) XZ section through the middle of the bead image, (d) Z-axis maximum intensity profiles and (e) X-axis Intensity profile as a function of Z.

Fig. 4
Fig. 4

Temporary micro-lens effect. (a) Timecourse of the intensity and (b) images of E.coli bacteria during a complete evaporation of a 1µL droplet. The bacteria, at first undetectable (1), is revealed when in the meniscus (2) and disappears back when evaporation is complete (3). The three graphs represent three independent trials. The cover glass is here slightly hydrophobic, no thin wetting film remains after the evaporation.

Fig. 6
Fig. 6

(a,b,c) Time lapse pictures acquired by lensless imaging during the evaporation of a 1µl droplet containing ~1000 E.coli DS-red (Cy3)/μl leading to the formation of a thin wetting film. The FOV of the CMOS sensor is 4.3 mm2 which corresponds approximately to 30% of a 1µl droplet evaporation surface. (d,e) FOV corresponding to the white rectangle in (c) imaged by means of (d) fluorescence microscopy (x5/0.15 NA) and (e) lensless imaging.

Fig. 5
Fig. 5

Long term micro-lens effect. (a) Timecourse of the intensity and (b) images of E.coli bacteria acquired with lensless imaging as a function of the evaporation time. The bacteria is first undetectable (1), but is revealed when in the meniscus (2) and is amplified after thin film formation (3). The glass cover slip is here hydrophilic, a thin wetting film remains after the evaporation and so does the image of E.coli bacteria.

Fig. 7
Fig. 7

Intensity profiles recorded in the presence of a thin wetting film of (a) 1μm diameter polymer beads, (b) 5μm diameter polymer beads and (c) Bacillus subtilis. The blue bold line corresponds to the mean value.

Fig. 8
Fig. 8

Image of ~700 1µm beads by means of (a) lensless imaging in thin wetting film and (b) fluorescence microscopy (x5/0.15 NA). (c) Detection performance of the lensless imaging obtained by comparison of (a) and (b). (d,e,f) Zoomed images of (a,b,c) respectively (white rectangle).

Fig. 9
Fig. 9

Detection efficiency and false positives percentage as a function of (a) the correlation threshold (200-300 1µm beads) and (b) the number of beads present in the FOV of the lensless imaging (images compiled with a cross-correlation threshold of 0.7). The bold lines correspond to mean values.

Fig. 10
Fig. 10

Lensless imaging of 1µm beads in a thin wetting film. The image is upsampled by a factor 9. Intensities are indicated in 16 colors on a linear scale. Overplotted in black are the centroid of the fluorescence detection (cross) and lensless imaging position (circle).

Fig. 11
Fig. 11

Co-localization error distribution measured on the lensless imaging device with the x20 magnification fluorescence microscopy serving as reference. The distribution compiles 640 detections of 1 µm beads over 21 different acquisitions.

Metrics