Abstract

An accurate SO2 prediction method for using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is proposed. The method fitted the NIR spectra to a Taylor expansion attenuation model, and used the simulated annealing method to initialize the nonlinear least squares fit. This paper investigated the effect of potential spectral interferences that are likely to be encountered in clinical use, on SO2 prediction accuracy. The factors include the concentration of hemoglobin in blood, the volume of blood and volume of water in the tissue under the sensor, reduced scattering coefficient, µs', of the muscle, fat thickness and the source-detector spacing. The SO2 prediction method was evaluated on simulated muscle spectra as well as on dual-dye phantoms which simulate the absorbance of oxygenated and deoxygenated hemoglobin.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [CrossRef] [PubMed]
  2. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009).
    [CrossRef] [PubMed]
  3. E. Gerz, D. Geraskin, P. Neary, J. Franke, P. Platen, and M. Kohl-Bareis, “Tissue oxygenation during exercise measured with NIRS: a quality control study,” I. Georgakoudi, J. Popp, and K. Svanberg, eds., (SPIE, Munich, Germany, 2009), pp. 736816.
  4. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
    [CrossRef] [PubMed]
  5. Y. Yang, O. Soyemi, P. J. Scott, M. R. Landry, S. M. Lee, L. Stroud, and B. R. Soller, “Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy,” Opt. Express 15(21), 13715–13730 (2007).
    [CrossRef] [PubMed]
  6. Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
    [CrossRef]
  7. G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
    [PubMed]
  8. F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
    [CrossRef] [PubMed]
  9. S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
    [CrossRef] [PubMed]
  10. D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988).
    [PubMed]
  11. L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
    [CrossRef] [PubMed]
  12. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  13. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” in Optical Tomography and Spectroscopy of Tissue III, Britton Chance, Robert R.Alfano, and Bruce J.Tromberg, eds., (1999), pp. 582–592.
  14. S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” B. Chance and R. R. Alfano, eds., (SPIE, San Jose, CA, USA, 1995), pp. 486–495.
  15. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
    [CrossRef] [PubMed]
  16. H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
    [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  18. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
    [CrossRef]
  19. A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
    [CrossRef] [PubMed]
  20. Y. Yang, M. R. Landry, O. O. Soyemi, M. A. Shear, D. S. Anunciacion, and B. R. Soller, “Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique,” Opt. Lett. 30(17), 2269–2271 (2005).
    [CrossRef] [PubMed]
  21. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
    [CrossRef] [PubMed]
  22. V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optim. Theory Appl. 45(1), 41–51 (1985).
    [CrossRef]
  23. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  24. Network for translational research optical imaging and Beckman Laser Institute & Medical Clinic, University of California - Irvine, “Appendix: Tissue Phantom Recipes,” in http://www.bli.uci.edu/ntroi/pubs/pdf/phantomrecipes.pdf , (2008).
  25. K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  26. D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
    [CrossRef]
  27. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
    [CrossRef] [PubMed]
  28. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [CrossRef] [PubMed]
  29. Biomedical optics laboratory, University of London. Specific extinction spectra of tissue chromophores. http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm . 2005.
  30. S. Luke, Essentials of Metaheuristics, available at http://cs.gmu.edu/~sean/book/metaheuristics/ , 2009.
  31. V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
    [CrossRef]
  32. Open source Matlab code of the SA method, http://www.mathworks.com/matlabcentral/fileexchange/10548 , 2008.
  33. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  34. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [CrossRef] [PubMed]
  35. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [CrossRef] [PubMed]
  36. A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [CrossRef]
  37. C. A. Andersson, “Direct orthogonalization,” Chemom. Intell. Lab. Syst. 47(1), 51–63 (1999).
    [CrossRef]
  38. J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [CrossRef]
  39. L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
    [CrossRef] [PubMed]
  40. S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
    [CrossRef]
  41. M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
    [CrossRef] [PubMed]
  42. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998).
    [CrossRef] [PubMed]

2009 (2)

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

2007 (2)

2006 (1)

L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
[CrossRef] [PubMed]

2005 (2)

Y. Yang, M. R. Landry, O. O. Soyemi, M. A. Shear, D. S. Anunciacion, and B. R. Soller, “Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique,” Opt. Lett. 30(17), 2269–2271 (2005).
[CrossRef] [PubMed]

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

2001 (4)

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

1999 (2)

C. A. Andersson, “Direct orthogonalization,” Chemom. Intell. Lab. Syst. 47(1), 51–63 (1999).
[CrossRef]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

1998 (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagniνres, and H. van den Bergh, “Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media,” Appl. Opt. 37(4), 779–791 (1998).
[CrossRef] [PubMed]

1997 (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

1996 (1)

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
[CrossRef]

1995 (3)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

1994 (2)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
[CrossRef]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

1988 (2)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988).
[PubMed]

1986 (1)

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[CrossRef]

1985 (1)

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optim. Theory Appl. 45(1), 41–51 (1985).
[CrossRef]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

1963 (1)

D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

1944 (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Altman, D.

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[CrossRef]

Anderson, L. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Andersson, C. A.

C. A. Andersson, “Direct orthogonalization,” Chemom. Intell. Lab. Syst. 47(1), 51–63 (1999).
[CrossRef]

Anunciacion, D. S.

Arango, M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Azuma, K.

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Barbieri, B. B.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Barstow, T. J.

L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
[CrossRef] [PubMed]

Barthélémy, J. C.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Bays, R.

Beilman, G. J.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Boas, D. A.

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

Borghuis, M. S.

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

Bracken, R. B.

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

Breit, G. A.

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

Cerný, V.

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optim. Theory Appl. 45(1), 41–51 (1985).
[CrossRef]

Chance, B.

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Chance, B. R. I. T.

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

Chiarotti, F.

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Chien, J.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Chiu, P. Y.

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

Colier, W. N.

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

Cooper, C. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Costes, F.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

Delpy, D. T.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Denis, C.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Ding, H.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Dögnitz, N.

Elwell, C. E.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Féasson, L.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Ferreira, L. F.

L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Fukunaga, T.

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
[CrossRef]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Geyssant, A.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Glaister, D. H.

D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988).
[PubMed]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Granville, V.

V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
[CrossRef]

Gratton, E.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Gross, J. H.

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

Hargens, A. R.

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

Homma, S.

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
[CrossRef]

Huang, L.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Hueber, D. M.

L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
[CrossRef] [PubMed]

Hwang, B.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Jöbsis-VanderVliet, F. F.

D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988).
[PubMed]

Kagaya, A.

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
[CrossRef]

Kienle, A.

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Krivanek, M.

V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
[CrossRef]

Landry, M. R.

Lee, S. M.

Levenberg, K.

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Li, Y.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Liu, H.

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

Loschenov, V. B.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Marquardt, D. W.

D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

Martin Bland, J.

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[CrossRef]

Matcher, S. J.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

Matthews, G.

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Moes, C. J. M.

Mowlem, J. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Murkin, J. M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Myers, D. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Ortner, J. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

Prahl, S. A.

Prieur, F.

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Rasson, J.-P.

V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
[CrossRef]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Scott, P. J.

Seifert, R. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

Shan, Q.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Shear, M. A.

Shimizu, S.

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

Soller, B. R.

Soyemi, O.

Soyemi, O. O.

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Stratonnikov, A. A.

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

Stroud, L.

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

Teng, Y.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

Tripp, L. D.

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

van Beekvelt, M. C.

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

van den Bergh, H.

van Engelen, B. G.

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Wagni?res, G.

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Warm, J. S.

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

Watenpaugh, D. E.

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

Wevers, R. A.

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Yang, Y.

Ye, D.

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Yodh, A. G.

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

Zee, P.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Anal. Biochem. (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[CrossRef]

Appl. Opt. (3)

Aviat. Space Environ. Med. (1)

D. H. Glaister and F. F. Jöbsis-VanderVliet, “A near-infrared spectrophotometric method for studying brain O2 sufficiency in man during +Gz acceleration,” Aviat. Space Environ. Med. 59(3), 199–207 (1988).
[PubMed]

Br. J. Anaesth. (1)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth. 103(6Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Chemom. Intell. Lab. Syst. (1)

C. A. Andersson, “Direct orthogonalization,” Chemom. Intell. Lab. Syst. 47(1), 51–63 (1999).
[CrossRef]

Clin. Sci. (1)

M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, “Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle,” Clin. Sci. 101(1), 21–28 (2001).
[CrossRef] [PubMed]

Eur. J. Appl. Physiol. (1)

S. Shimizu, F. Chiarotti, M. Ferrari, A. Kagaya, V. Quaresima, S. Homma, and K. Azuma, “Calf and shin muscle oxygenation patterns and femoral artery blood flow during dynamic plantar flexion exercise in humans,” Eur. J. Appl. Physiol. 84(5), 387–394 (2001).
[CrossRef] [PubMed]

Hum. Factors (1)

L. D. Tripp, J. S. Warm, G. Matthews, P. Y. Chiu, and R. B. Bracken, “On tracking the course of cerebral oxygen saturation and pilot performance during gravity-induced loss of consciousness,” Hum. Factors 51(6), 775–784 (2009).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated Annealing: A Proof of Convergence,” IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 652–656 (1994).
[CrossRef]

J. Appl. Physiol. (1)

L. F. Ferreira, D. M. Hueber, and T. J. Barstow, “Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise,” J. Appl. Physiol. 102(1), 358–367 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

S. Homma, T. Fukunaga, and A. Kagaya, “Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle,” J. Biomed. Opt. 1(4), 418–426 (1996).
[CrossRef]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[CrossRef] [PubMed]

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt. 10(3), 034017 (2005).
[CrossRef] [PubMed]

A. A. Stratonnikov and V. B. Loschenov, “Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra,” J. Biomed. Opt. 6(4), 457–467 (2001).
[CrossRef] [PubMed]

J. Bone Joint Surg. Am. (1)

G. A. Breit, J. H. Gross, D. E. Watenpaugh, B. R. I. T. Chance, and A. R. Hargens, “Near-infrared spectroscopy for monitoring of tissue oxygenation of exercising skeletal muscle in a chronic compartment syndrome model,” J. Bone Joint Surg. Am. 79(6), 838–843 (1997).
[PubMed]

J. Optim. Theory Appl. (1)

V. Černý, “Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,” J. Optim. Theory Appl. 45(1), 41–51 (1985).
[CrossRef]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[CrossRef]

Lancet (1)

J. Martin Bland and D. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[CrossRef]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Med. Sci. Sports Exerc. (1)

F. Costes, F. Prieur, L. Féasson, A. Geyssant, J. C. Barthélémy, and C. Denis, “Influence of training on NIRS muscle oxygen saturation during submaximal exercise,” Med. Sci. Sports Exerc. 33(9), 1484–1489 (2001).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Med. Biol. (6)

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999).
[CrossRef] [PubMed]

H. Liu, D. A. Boas, A. G. Yodh, and B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40(11), 1983–1993 (1995).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

Prog. Nat. Sci. (1)

Y. Teng, H. Ding, L. Huang, Y. Li, Q. Shan, D. Ye, H. Ding, J. Chien, and B. Hwang, “Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues,” Prog. Nat. Sci. 18(9), 1083–1088 (2008).
[CrossRef]

Q. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Science (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[CrossRef] [PubMed]

Other (7)

E. Gerz, D. Geraskin, P. Neary, J. Franke, P. Platen, and M. Kohl-Bareis, “Tissue oxygenation during exercise measured with NIRS: a quality control study,” I. Georgakoudi, J. Popp, and K. Svanberg, eds., (SPIE, Munich, Germany, 2009), pp. 736816.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” in Optical Tomography and Spectroscopy of Tissue III, Britton Chance, Robert R.Alfano, and Bruce J.Tromberg, eds., (1999), pp. 582–592.

S. J. Matcher, P. J. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near-infrared spectroscopy,” B. Chance and R. R. Alfano, eds., (SPIE, San Jose, CA, USA, 1995), pp. 486–495.

Network for translational research optical imaging and Beckman Laser Institute & Medical Clinic, University of California - Irvine, “Appendix: Tissue Phantom Recipes,” in http://www.bli.uci.edu/ntroi/pubs/pdf/phantomrecipes.pdf , (2008).

Biomedical optics laboratory, University of London. Specific extinction spectra of tissue chromophores. http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm . 2005.

S. Luke, Essentials of Metaheuristics, available at http://cs.gmu.edu/~sean/book/metaheuristics/ , 2009.

Open source Matlab code of the SA method, http://www.mathworks.com/matlabcentral/fileexchange/10548 , 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Farrell [33] simulated spectra using parameters of SO2 = 90, 80, 70, 60, 50, 40, 30, 20, 10, 5; HbT = 0.08, 0.1, 0.12mM; H2O = 0.6, 0.7, 0.8; μs' = 5, 7cm−1 . (a) With S-D of 3.0cm; (b) after an affine transformation.

Fig. 2
Fig. 2

Absoroption spectra of NIR dyes in methanol.

Fig. 3
Fig. 3

Sixty dye phantom spectra. (a) Long S-D distance absorbance spectra; (b) orthogonalized spectra; (c) orthogonalized spectra after an affine transformation.

Fig. 4
Fig. 4

Plots of SO2 results from 540 simulated spectra with different long S-D distances. (a) Predicted vs actual SO2, the diagonal line represents perfect prediction; (b) Bland and Altman plot of actual and predicted SO2, in which the bias is 0.87%, the standard deviation of the difference is 2.31%.

Fig. 5
Fig. 5

Bland-Altman plots of actual and predicted SO2 results from simulated spectra with S-D distance of 4.0cm. (a) Relation with varying HbT; (b) relation with varying µs'; (c) relation with different water fraction.

Fig. 6
Fig. 6

Bland and Altman plots of measured and predicted dye ratio from the dye phantom spectra with different absorbance and scattering properties, in which the bias is 1.38% and the standard deviation of the difference is 1.29%. (a) Relation with varying total dye concentration; (b) relation with analog of varying total hemoglobin; (c) relation with different fat thickness.

Tables (4)

Tables Icon

Table 1 Parameter values used to generate the simulates spectra

Tables Icon

Table 2 R2 and RMSEP for the predicted SO2 results from simulated spectra with different S-D distances

Tables Icon

Table 3 R2 and RMSEP for the predicted SO2 results from simulated spectra with S-D distance of 4.0cm, with different factors

Tables Icon

Table 4 R2 and RMSEP for dye ratio calculated from orthogonalized spectra of the dual-dye phantoms with different scattering and absorbance properties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A exp ( λ ) = ln I ref ( λ ) I ( λ ) = ln I 0 ( λ ) I ( λ ) + c = c 0 + c 1 μ ' s,0 ( λ ) + L [ c Hb ε Hb ( λ ) + c HbO 2 ε HbO 2 ( λ ) ] ln 10 + c H 2 O ε H 2 O ( λ ) ln 10 + error ,
StO 2 = c HbO 2 HbT 100 % ,
R ( ρ ) = 0 R ( ρ , z 0 ) δ ( z 0 1 μ ' t ) d z 0 = a ' 4 π [ 1 μ ' t ( μ e f f + 1 r 1 ) e μ e f f r 1 r 1 2 + ( 1 μ ' t + 2 z b ) ( μ e f f + 1 r 2 ) e μ e f f r 2 r 2 2 ] ,
A ( ρ ) = ln ( R ( ρ ) ) ,
d R a t i o = [ Dye 2 ] [ Dye 1 ] + [ Dye 2 ] 100 % ,  where  [ Dye ]  represents Dye concentration ,
RMSEP = i = 1 N ( y ^ i y i ) 2 N

Metrics