Abstract

We apply wide-field interferometric microscopy techniques to acquire quantitative phase profiles of ventricular cardiomyocytes in vitro during their rapid contraction with high temporal and spatial resolution. The whole-cell phase profiles are analyzed to yield valuable quantitative parameters characterizing the cell dynamics, without the need to decouple thickness from refractive index differences. Our experimental results verify that these new parameters can be used with wide field interferometric microscopy to discriminate the modulation of cardiomyocyte contraction dynamics due to temperature variation. To demonstrate the necessity of the proposed numerical analysis for cardiomyocytes, we present confocal dual-fluorescence-channel microscopy results which show that the rapid motion of the cell organelles during contraction preclude assuming a homogenous refractive index over the entire cell contents, or using multiple-exposure or scanning microscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
    [CrossRef] [PubMed]
  2. C. A. Walker and F. G. Spinale, “The structure and function of the cardiac myocyte: a review of fundamental concepts,” J. Thorac. Cardiovasc. Surg. 118(2), 375–382 (1999).
    [CrossRef] [PubMed]
  3. S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
    [CrossRef] [PubMed]
  4. V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
    [CrossRef] [PubMed]
  5. D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
    [PubMed]
  6. H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
    [CrossRef] [PubMed]
  7. E. U. Azeloglu and K. D. Costa, “Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy,” Am. J. Physiol. Heart Circ. Physiol. 298(3), H853–H860 (2010).
    [CrossRef] [PubMed]
  8. A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
    [CrossRef] [PubMed]
  9. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [CrossRef] [PubMed]
  10. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  11. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  12. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
    [CrossRef] [PubMed]
  13. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
    [CrossRef] [PubMed]
  14. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
    [CrossRef] [PubMed]
  15. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [CrossRef] [PubMed]
  16. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [CrossRef] [PubMed]
  17. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
    [CrossRef] [PubMed]
  18. G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
    [CrossRef] [PubMed]
  19. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [CrossRef] [PubMed]
  20. R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
    [CrossRef] [PubMed]
  21. G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
    [CrossRef] [PubMed]
  22. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
    [CrossRef] [PubMed]
  23. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [CrossRef] [PubMed]
  24. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  25. G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [CrossRef] [PubMed]
  26. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
    [CrossRef] [PubMed]
  27. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
    [CrossRef] [PubMed]
  28. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
    [CrossRef] [PubMed]
  29. K. Edward, F. Farahi, and R. Hocken, “Hybrid shear force feedback/scanning quantitative phase microscopy applied to subsurface imaging,” Opt. Express 17(21), 18408–18418 (2009).
    [CrossRef] [PubMed]
  30. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
    [CrossRef] [PubMed]
  31. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [CrossRef] [PubMed]
  32. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
    [CrossRef] [PubMed]
  33. M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
    [CrossRef] [PubMed]
  34. V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
    [CrossRef] [PubMed]
  35. N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
    [CrossRef] [PubMed]
  36. N. Badie and N. Bursac, “Novel micropatterned cardiac cell cultures with realistic ventricular microstructure,” Biophys. J. 96(9), 3873–3885 (2009).
    [CrossRef] [PubMed]
  37. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
    [CrossRef] [PubMed]
  38. W. J. Conover, Practical Nonparametric Statistics, 3rd Edition (John Wiley, 1999), pp. 271–276.
  39. J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
    [PubMed]
  40. H. S. Badeer, “Effect of hypothermia on the contractile “capacity” of the myocardium,” J. Thorac. Cardiovasc. Surg. 53(5), 651–656 (1967).
    [PubMed]
  41. E. Marbán, “Cardiac channelopathies,” Nature 415(6868), 213–218 (2002).
    [CrossRef] [PubMed]
  42. J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
    [CrossRef] [PubMed]
  43. Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
    [CrossRef] [PubMed]
  44. M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
    [CrossRef] [PubMed]

2010

E. U. Azeloglu and K. D. Costa, “Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy,” Am. J. Physiol. Heart Circ. Physiol. 298(3), H853–H860 (2010).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
[CrossRef] [PubMed]

N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
[CrossRef] [PubMed]

2009

N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009).
[CrossRef] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[CrossRef] [PubMed]

K. Edward, F. Farahi, and R. Hocken, “Hybrid shear force feedback/scanning quantitative phase microscopy applied to subsurface imaging,” Opt. Express 17(21), 18408–18418 (2009).
[CrossRef] [PubMed]

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
[CrossRef] [PubMed]

N. Badie and N. Bursac, “Novel micropatterned cardiac cell cultures with realistic ventricular microstructure,” Biophys. J. 96(9), 3873–3885 (2009).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

2008

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

2007

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

2006

2005

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[CrossRef] [PubMed]

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

2002

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

E. Marbán, “Cardiac channelopathies,” Nature 415(6868), 213–218 (2002).
[CrossRef] [PubMed]

1999

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

C. A. Walker and F. G. Spinale, “The structure and function of the cardiac myocyte: a review of fundamental concepts,” J. Thorac. Cardiovasc. Surg. 118(2), 375–382 (1999).
[CrossRef] [PubMed]

1996

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

1995

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

1967

H. S. Badeer, “Effect of hypothermia on the contractile “capacity” of the myocardium,” J. Thorac. Cardiovasc. Surg. 53(5), 651–656 (1967).
[PubMed]

1966

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

1952

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[CrossRef] [PubMed]

Abbott, G. W.

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Anderson, R. H.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Azeloglu, E. U.

E. U. Azeloglu and K. D. Costa, “Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy,” Am. J. Physiol. Heart Circ. Physiol. 298(3), H853–H860 (2010).
[CrossRef] [PubMed]

Badeer, H. S.

H. S. Badeer, “Effect of hypothermia on the contractile “capacity” of the myocardium,” J. Thorac. Cardiovasc. Surg. 53(5), 651–656 (1967).
[PubMed]

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

N. Badie and N. Bursac, “Novel micropatterned cardiac cell cultures with realistic ventricular microstructure,” Biophys. J. 96(9), 3873–3885 (2009).
[CrossRef] [PubMed]

N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
[CrossRef] [PubMed]

Badizadegan, K.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

Barer, R.

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[CrossRef] [PubMed]

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Bers, D. M.

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

Best, C. A.

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

Best-Popescu, C. A.

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Blatter, L. A.

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

Brandenburg, A.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Braunwald, E.

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Bub, G.

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

Buja, L. M.

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

N. Badie and N. Bursac, “Novel micropatterned cardiac cell cultures with realistic ventricular microstructure,” Biophys. J. 96(9), 3873–3885 (2009).
[CrossRef] [PubMed]

N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
[CrossRef] [PubMed]

Cano, E.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Chai, Z.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Charrière, F.

Choi, W.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Christini, D. J.

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

Colomb, T.

Costa, K. D.

E. U. Azeloglu and K. D. Costa, “Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy,” Am. J. Physiol. Heart Circ. Physiol. 298(3), H853–H860 (2010).
[CrossRef] [PubMed]

Covell, J. W.

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

Cuche, E.

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Dasari, R. R.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

Deflores, L.

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Delbridge, L. M.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

Depeursinge, C.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Edward, K.

Ehlers, M. D.

Emery, Y.

Engel, J.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Farahi, F.

Fechner, M.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Feld, M. S.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

Filippova, N. A.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Finan, J. D.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

Finch, S. A.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Fratz, M.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Gaeta, S. A.

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

Giel, D.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Guilak, F.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

Hao, X.-M.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Hickson-Bick, D. L. M.

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

Hocken, R.

Hoffmann, C.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Ikeda, T.

Kamgoué, A.

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

Kemmler, M.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Kemper, B.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Klemyashov, I. V.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

Kretushev, A. V.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Kuehn, J.

Kühn, J.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

Lederer, W. J.

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

Loukas, M.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Lue, N.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

Lukyanenko, V.

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

Lukyanenko, Y. O.

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

Lunkenheimer, P. P.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Magistretti, P.

Magistretti, P. J.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

Marbán, E.

E. Marbán, “Cardiac channelopathies,” Nature 415(6868), 213–218 (2002).
[CrossRef] [PubMed]

Marian, A.

Marquet, P.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

McMillin, J. B.

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

Montfort, F.

Newpher, T. M.

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Ohayon, J.

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

Park, Y. K.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Popescu, G.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. K. Park, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

Raikhlin, N. T.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Rappaz, B.

Rinehart, M. T.

Riou, L.

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Ross, J.

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

Salnikov, V.

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

Sanchez-Quintana, D.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Sasai, M.

M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
[CrossRef] [PubMed]

Satoh, H.

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

Satterwhite, L.

N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
[CrossRef] [PubMed]

Saum, N.

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Shaked, N. T.

Shtil, A. A.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Simanis, V.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Smerup, M.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Sonnenblick, E. H.

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

Sowerby, A. J.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Sparagna, G. C.

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

Spinale, F. G.

C. A. Walker and F. G. Spinale, “The structure and function of the cardiac myocyte: a review of fundamental concepts,” J. Thorac. Cardiovasc. Surg. 118(2), 375–382 (1999).
[CrossRef] [PubMed]

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

Stier, A.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Takano, M.

M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
[CrossRef] [PubMed]

Terada, T. P.

M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
[CrossRef] [PubMed]

Tracqui, P.

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

Tychinsky, V. P.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Usson, Y.

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

Vyshenskaya, T. V.

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

Walker, C. A.

C. A. Walker and F. G. Spinale, “The structure and function of the cardiac myocyte: a review of fundamental concepts,” J. Thorac. Cardiovasc. Surg. 118(2), 375–382 (1999).
[CrossRef] [PubMed]

Wang, S.-Q.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Wax, A.

Wu, C.-H.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Yaqoob, Z.

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

Zhang, G.-Q.

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
[CrossRef] [PubMed]

Am. J. Physiol. Cell Physiol.

G. Popescu, Y. K. Park, N. Lue, C. A. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol.

D. L. M. Hickson-Bick, G. C. Sparagna, L. M. Buja, and J. B. McMillin, “Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS,” Am. J. Physiol. Heart Circ. Physiol. 282(2), H656–H664 (2002).
[PubMed]

E. U. Azeloglu and K. D. Costa, “Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy,” Am. J. Physiol. Heart Circ. Physiol. 298(3), H853–H860 (2010).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

N. Badie, L. Satterwhite, and N. Bursac, “A method to replicate the microstructure of heart tissue in vitro using DTMRI-based cell micropatterning,” Ann. Biomed. Eng. 37(12), 2510–2521 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

J. Engel, A. J. Sowerby, S. A. Finch, M. Fechner, and A. Stier, “Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation,” Biophys. J. 68(1), 40–45 (1995).
[CrossRef] [PubMed]

Y. Fu, G.-Q. Zhang, X.-M. Hao, C.-H. Wu, Z. Chai, and S.-Q. Wang, “Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes,” Biophys. J. 89(4), 2533–2541 (2005).
[CrossRef] [PubMed]

N. Badie and N. Bursac, “Novel micropatterned cardiac cell cultures with realistic ventricular microstructure,” Biophys. J. 96(9), 3873–3885 (2009).
[CrossRef] [PubMed]

H. Satoh, L. M. Delbridge, L. A. Blatter, and D. M. Bers, “Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and developmental effects,” Biophys. J. 70(3), 1494–1504 (1996).
[CrossRef] [PubMed]

Blood Cells Mol. Dis.

G. Popescu, Y. K. Park, W. Choi, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cells Mol. Dis. 41(1), 10–16 (2008).
[CrossRef] [PubMed]

Circ. Res.

S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism for subcellular alternans in cardiac myocytes,” Circ. Res. 105(4), 335–342 (2009).
[CrossRef] [PubMed]

J. W. Covell, J. Ross, E. H. Sonnenblick, and E. Braunwald, “Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart,” Circ. Res. 19(2), 364–372 (1966).
[PubMed]

Clin. Anat.

R. H. Anderson, M. Smerup, D. Sanchez-Quintana, M. Loukas, and P. P. Lunkenheimer, “The three-dimensional arrangement of the myocytes in the ventricular walls,” Clin. Anat. 22(1), 64–76 (2009).
[CrossRef] [PubMed]

Cytometry A

A. Kamgoué, J. Ohayon, Y. Usson, L. Riou, and P. Tracqui, “Quantification of cardiomyocyte contraction based on image correlation analysis,” Cytometry A 75(4), 298–308 (2009).
[CrossRef] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[CrossRef] [PubMed]

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15(3), 030503 (2010).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 034005 (2006).
[CrossRef] [PubMed]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[CrossRef] [PubMed]

M. Kemmler, M. Fratz, D. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12(6), 064002 (2007).
[CrossRef] [PubMed]

V. P. Tychinsky, A. V. Kretushev, I. V. Klemyashov, T. V. Vyshenskaya, N. A. Filippova, N. T. Raikhlin, and A. A. Shtil, “Quantitative real-time analysis of nucleolar stress by coherent phase microscopy,” J. Biomed. Opt. 13(6), 064032 (2008).
[CrossRef] [PubMed]

J. Muscle Res. Cell Motil.

V. Salnikov, Y. O. Lukyanenko, W. J. Lederer, and V. Lukyanenko, “Distribution of ryanodine receptors in rat ventricular myocytes,” J. Muscle Res. Cell Motil. 30(3-4), 161–170 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. A

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113(47), 13327–13330 (2009).
[CrossRef] [PubMed]

J. Thorac. Cardiovasc. Surg.

C. A. Walker and F. G. Spinale, “The structure and function of the cardiac myocyte: a review of fundamental concepts,” J. Thorac. Cardiovasc. Surg. 118(2), 375–382 (1999).
[CrossRef] [PubMed]

H. S. Badeer, “Effect of hypothermia on the contractile “capacity” of the myocardium,” J. Thorac. Cardiovasc. Surg. 53(5), 651–656 (1967).
[PubMed]

Nat. Methods

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nature

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[CrossRef] [PubMed]

E. Marbán, “Cardiac channelopathies,” Nature 415(6868), 213–218 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

M. Takano, T. P. Terada, and M. Sasai, “Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor,” Proc. Natl. Acad. Sci. U.S.A. 107(17), 7769–7774 (2010).
[CrossRef] [PubMed]

Other

W. J. Conover, Practical Nonparametric Statistics, 3rd Edition (John Wiley, 1999), pp. 271–276.

Supplementary Material (5)

» Media 1: MOV (9145 KB)     
» Media 2: MOV (9005 KB)     
» Media 3: MOV (1268 KB)     
» Media 4: MOV (4116 KB)     
» Media 5: MOV (1605 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Tracking the dynamics of the mitochondria (red) and nuclei (blue) during the contraction of live cardiomyocytes, as obtained by confocal dual-fluorescence-channel microscopy, 100 × . (a) Overlaid image of several cells (dynamics, 13.7 fps for 20.2 sec: Media 1); (b-g) Another cell from the monolayer in two different axial positions, Z1 (b-d) and Z2 (e-g) in two time periods (dynamics, 13.7 fps for 20.2 sec: Media 2), demonstrating the complex structure and dynamics of these cells. (b,e) Nuclei only, (c,f) Mitochondria only, (d,g) Overlaid images. White horizontal scale bars in (a) and in (b-g) represent 10 µm.

Fig. 2
Fig. 2

Off-axis WFDI phase-microscopy system for recording cardiomyocyte dynamics in various environmental conditions. A = Pinhole; L0, L1, L2 = Lenses BS1, BS2 = Beam splitters; M = Mirror; S = Sample; Pin, Pout = Micro-pipettes; MO = Microscope objective; T = Temperature control.

Fig. 3
Fig. 3

WFDI-based phase profile of a cardiomyocyte during a single beating cycle, 40 × . White horizontal scale bar represents 10 µm. Vertical color bar is in radians. Dynamics, 120 fps for 1 sec: Media 3.

Fig. 4
Fig. 4

Example of numerical analysis applied on a WFDI-based phase profile of a cardiomyocyte during beating at two different temperatures: (a-d) at 30°C, (e-h) at 23°C. (a,e) Phase profile; (b,f) PAD profile; (c,g) PID profile for τ = 8.3 msec (one-frame separation); (d,h) PID profile for τ = 83.3 msec (ten-frame separation). In (b-d,f-h): ‘hot’ colors represent positive values, ‘cold’ colors represent negative values, and cyan represents zeros. White horizontal scale bar represents 10 µm. Dynamics, 120 fps for 1 sec: Media 4.

Fig. 5
Fig. 5

Calculation of different numerical parameters based on the dynamic phase profiles shown in Fig. 4. (a-d) MS-PAD profiles (based on which the η parameters are defined): (a) MS-PAD+ at 30°C (which yields η 1 + = 0.10998 ); (b) MS-PAD at 30°C (which yields η 1 = 0.10941 ); (c) MS-PAD+ at 23°C (which yields η 1 + = 0.10249 ); (d) MS-PAD at 23°C (which yields η 1 = 0.10251 ). (e-h) MS-PID profiles for τ = 8.3 msec (varying τ: Media 5): (e) MS-PID+ at 30°C; (f) MS-PID at 30°C; (g) MS-PID+ at 23°C; (h) MS-PID at 23°C. (i-k) Graphs showing the dependency of the γ parameters on τ. Solid red lines represent the measurements done at 30°C. Broken blue lines represent the measurements done at 23°C. (i) γ 1 , τ + (which is based on MS-PID+); (j) γ 1 , τ (which is based on MS-PID); (k). γ 2 , τ (which is based on the spectral-domain MS-PID). The white horizontal scale bars represent 10 µm.

Fig. 6
Fig. 6

Values of the γ and η parameters that are based on the whole-cell phase profiles, demonstrating that these parameters discriminate between cardiomyocytes beating at 30°C and 23°C (18 cells in each group, 2-3 beating cycles per each cell). Each circle represents a different cardiomyocyte, and the horizontal line at each group represents the average value for all cells in the group.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ t ( x , y ) = ϕ t ( x , y ) ϕ 0 ( x , y ) ,
Δ ϕ M S + ( x , y ) = ( Δ ϕ t ( x , y ) ) 2 : Δ ϕ t ( x , y ) 0 t , Δ ϕ M S ( x , y ) = ( Δ ϕ t ( x , y ) ) 2 : Δ ϕ t ( x , y ) < 0 t ,
Δ ϕ M S ( f x , f y ) = | Δ ϕ t ( f x , f y ) | 2 t ,
η 1 + = Δ ϕ M S + ( x , y ) ( x , y ) , η 1 = Δ ϕ M S ( x , y ) ( x , y ) , η 2 = Δ ϕ M S ( f x , f y ) ( f x , f y ) ,
Δ ϕ t , τ ( x , y ) = ϕ t + τ ( x , y ) ϕ t ( x , y ) .
Δ ϕ M S , τ + ( x , y ) = ( Δ ϕ t , τ ( x , y ) ) 2 : Δ ϕ t , τ ( x , y ) 0 t , Δ ϕ M S , τ ( x , y ) = ( Δ ϕ t , τ ( x , y ) ) 2 : Δ ϕ t , τ ( x , y ) < 0 t ,
Δ ϕ M S , τ ( f x , f y ) = | Δ ϕ t , τ ( f x , f y ) | 2 t ,
γ 1 , τ + = Δ ϕ M S , τ + ( x , y ) ( x , y ) , γ 1 , τ = Δ ϕ M S , τ ( x , y ) ( x , y ) , γ 2 , τ = Δ ϕ M S , τ ( f x , f y ) ( f x , f y ) .

Metrics