Abstract

The contamination of the Raman scattering signal with luminescence is a well-known problem when dealing with biological media excited by visible light. The viability of the shifted-excitation Raman difference spectroscopy (SERDS) technique for luminescence suppression on Raman spectra of biological samples was studied in this work. A tunable Lithrow-configuration diode laser (λ = 785 and 830 nm) coupled (directly or by optical fiber) to a dispersive Raman spectrometer was employed to study two sets of human tissues (tooth and skin) in order to determine the set of experimental parameters suitable for luminescence rejection. It was concluded that systematic and reproducible spectra of biological interest can be acquired by SERDS.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microsystem 671 nm light source for shifted excitation Raman difference spectroscopy

Martin Maiwald, Heinar Schmidt, Bernd Sumpf, Götz Erbert, Heinz-Detlef Kronfeldt, and Günther Tränkle
Appl. Opt. 48(15) 2789-2792 (2009)

Capability of shifted excitation Raman difference spectroscopy under ambient daylight

Martin Maiwald, André Müller, Bernd Sumpf, Götz Erbert, and Günther Tränkle
Appl. Opt. 54(17) 5520-5524 (2015)

Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma

Christian Knipfer, Johanna Motz, Werner Adler, Kathrin Brunner, Medhaine Tesfay Gebrekidan, Robert Hankel, Abbas Agaimy, Stefan Will, Andreas Braeuer, Friedrich Wilhelm Neukam, and Florian Stelzle
Biomed. Opt. Express 5(9) 3252-3265 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
    [Crossref] [PubMed]
  2. R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
    [Crossref] [PubMed]
  3. C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
    [Crossref]
  4. G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
    [Crossref] [PubMed]
  5. A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
    [Crossref] [PubMed]
  6. J. F. Ojeda, C. Xie, Y. Q. Li, F. E. Bertrand, J. Wiley, and T. J. McConnell, “Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy,” Opt. Express 14(12), 5385–5393 (2006).
    [Crossref] [PubMed]
  7. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
    [Crossref] [PubMed]
  8. C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
    [Crossref] [PubMed]
  9. V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. Asher, “UV Raman microspectroscopy: spectral and spatial selectivity with sensitivity and simplicity,” Appl. Spectrosc. 51(1), 81–86 (1997).
    [Crossref]
  10. P. Mosier-Boss, S. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49(5), 630–638 (1995).
    [Crossref]
  11. E. V. Efremov, J. B. Buijs, C. Gooijer, and F. Ariese, “Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera,” Appl. Spectrosc. 61(6), 571–578 (2007).
    [Crossref] [PubMed]
  12. A. Shreve, N. Cherepy, and R. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46(4), 707–711 (1992).
    [Crossref]
  13. B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134(6), 1198–1202 (2009).
    [Crossref] [PubMed]
  14. S. T. McCain, R. M. Willett, and D. J. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16(15), 10975–10991 (2008).
    [Crossref] [PubMed]
  15. P. A. Mosier-Boss, S. H. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49(5), 630–638 (1995).
    [Crossref]
  16. D. Zhang and D. Ben-Amotz, “Enhanced chemical classification of Raman images in the presence of strong fluorescence interference,” Appl. Spectrosc. 54(9), 1379–1383 (2000).
    [Crossref]
  17. J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51(2), 201–208 (1997).
    [Crossref]
  18. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
    [Crossref] [PubMed]
  19. J. Zhao, M. Carrabba, and F. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56(7), 834–845 (2002).
    [Crossref]
  20. S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
    [Crossref]
  21. I. Osticioli, A. Zoppi, and E. M. Castellucci, “Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples,” Appl. Spectrosc. 61(8), 839–844 (2007).
    [Crossref] [PubMed]
  22. L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
    [Crossref] [PubMed]
  23. B. Saleh, and M. Teich, Fundamentals of photonics, John Wiley & Sons, New York, 1991.

2009 (1)

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134(6), 1198–1202 (2009).
[Crossref] [PubMed]

2008 (3)

S. T. McCain, R. M. Willett, and D. J. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16(15), 10975–10991 (2008).
[Crossref] [PubMed]

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

2007 (4)

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

E. V. Efremov, J. B. Buijs, C. Gooijer, and F. Ariese, “Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera,” Appl. Spectrosc. 61(6), 571–578 (2007).
[Crossref] [PubMed]

I. Osticioli, A. Zoppi, and E. M. Castellucci, “Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples,” Appl. Spectrosc. 61(8), 839–844 (2007).
[Crossref] [PubMed]

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

2006 (3)

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

J. F. Ojeda, C. Xie, Y. Q. Li, F. E. Bertrand, J. Wiley, and T. J. McConnell, “Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy,” Opt. Express 14(12), 5385–5393 (2006).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (1)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

2000 (2)

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

D. Zhang and D. Ben-Amotz, “Enhanced chemical classification of Raman images in the presence of strong fluorescence interference,” Appl. Spectrosc. 54(9), 1379–1383 (2000).
[Crossref]

1998 (1)

S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
[Crossref]

1997 (2)

1995 (2)

1992 (1)

Allen, F.

Andrade, P. O.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Ariese, F.

Asher, S. A.

Beier, B. D.

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134(6), 1198–1202 (2009).
[Crossref] [PubMed]

Bell, S. E. J.

S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
[Crossref]

Ben-Amotz, D.

Berger, A. J.

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134(6), 1198–1202 (2009).
[Crossref] [PubMed]

Bertrand, F. E.

Bhatt, R.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Bird, B.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Bitar, R. A.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Bormett, R. W.

Bourguignon, E. S. O.

S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
[Crossref]

Brady, D. J.

Brennan, J. F.

Brugnera, A.

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

Bruno, P. M.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Buijs, J. B.

Carden, A.

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

Carrabba, M.

Castellucci, E. M.

Cherepy, N.

Chernenko, T.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Dasari, R. R.

Deed, S.

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

Dennis, A.

S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
[Crossref]

Diem, M.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Efremov, E. V.

Feld, M. S.

Fernandes, D.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Gooijer, C.

Kartha, V.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Krishna, C.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Kushtagi, P.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Li, Y. Q.

Lieber, C. A.

Lieberman, S.

Lieberman, S. H.

Mahadevan-Jansen, A.

Malini, R.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Martin, A. A.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Martinho, H.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Martinho, H. S.

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Mathies, R.

Matthäus, C.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

McCain, S. T.

McConnell, T. J.

McNaughton, D.

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Miljkovic, M.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Morris, M. D.

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

Mosier-Boss, P.

Mosier-Boss, P. A.

Munro, C. H.

Netto, M. M.

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Newbery, R.

Ojeda, J. F.

Osticioli, I.

Pajcini, V.

Prathima, N.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Resende, E. B. P. S.

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

Romeo, M.

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Santo, A. M. E.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Shreve, A.

Soares, L. E. S.

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

Tait, B.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Tierra-Criollo, C. J.

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Tilley, L.

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

Vadhiraja, B.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Vidyasagar, M.

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Wang, Y.

Webster, G. T.

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

Wiley, J.

Willett, R. M.

Witkowski, R. E.

Wood, B. R.

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

Xie, C.

Yassoyama, K.

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Zambelli Ramalho, L. N.

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Zanin, F. A. A.

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

Zhang, D.

Zhao, J.

Zoppi, A.

Anal. Bioanal. Chem. (1)

P. O. Andrade, R. A. Bitar, K. Yassoyama, H. Martinho, A. M. E. Santo, P. M. Bruno, and A. A. Martin, “Study of normal colorectal tissue by FT-Raman spectroscopy,” Anal. Bioanal. Chem. 387(5), 1643–1648 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (2)

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134(6), 1198–1202 (2009).
[Crossref] [PubMed]

S. E. J. Bell, E. S. O. Bourguignon, and A. Dennis, “Analysis of luminescent samples using subtracted shifted Raman spectroscopy,” Analyst (Lond.) 123(8), 1729–1734 (1998).
[Crossref]

Appl. Spectrosc. (10)

I. Osticioli, A. Zoppi, and E. M. Castellucci, “Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples,” Appl. Spectrosc. 61(8), 839–844 (2007).
[Crossref] [PubMed]

P. A. Mosier-Boss, S. H. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49(5), 630–638 (1995).
[Crossref]

D. Zhang and D. Ben-Amotz, “Enhanced chemical classification of Raman images in the presence of strong fluorescence interference,” Appl. Spectrosc. 54(9), 1379–1383 (2000).
[Crossref]

J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51(2), 201–208 (1997).
[Crossref]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57(11), 1363–1367 (2003).
[Crossref] [PubMed]

J. Zhao, M. Carrabba, and F. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56(7), 834–845 (2002).
[Crossref]

V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. Asher, “UV Raman microspectroscopy: spectral and spatial selectivity with sensitivity and simplicity,” Appl. Spectrosc. 51(1), 81–86 (1997).
[Crossref]

P. Mosier-Boss, S. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49(5), 630–638 (1995).
[Crossref]

E. V. Efremov, J. B. Buijs, C. Gooijer, and F. Ariese, “Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera,” Appl. Spectrosc. 61(6), 571–578 (2007).
[Crossref] [PubMed]

A. Shreve, N. Cherepy, and R. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46(4), 707–711 (1992).
[Crossref]

Biochim. Biophys. Acta (1)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539(1-2), 58–70 (2001).
[Crossref] [PubMed]

FEBS Lett. (1)

G. T. Webster, L. Tilley, S. Deed, D. McNaughton, and B. R. Wood, “Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes,” FEBS Lett. 582(7), 1087–1092 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5(3), 259–268 (2000).
[Crossref] [PubMed]

R. A. Bitar, H. S. Martinho, C. J. Tierra-Criollo, L. N. Zambelli Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11(5), 054001 (2006).
[Crossref] [PubMed]

Methods Cell Biol. (1)

C. Matthäus, B. Bird, M. Miljković, T. Chernenko, M. Romeo, and M. Diem, “Chapter 10: Infrared and Raman microscopy in cell biology,” Methods Cell Biol. 89, 275–308 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Photomed. Laser Surg. (1)

L. E. S. Soares, E. B. P. S. Resende, A. Brugnera, F. A. A. Zanin, and A. A. Martin, “Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin,” Photomed. Laser Surg. 25(4), 239–244 (2007).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

C. Krishna, N. Prathima, R. Malini, B. Vadhiraja, R. Bhatt, D. Fernandes, P. Kushtagi, M. Vidyasagar, and V. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Other (1)

B. Saleh, and M. Teich, Fundamentals of photonics, John Wiley & Sons, New York, 1991.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic view of the SERDS system for macro-Raman in vitro measurements. (1) laser; (2) mirror; (3) convergent lens; (4) sample holder; (5) and (7) telescope; (6) notch filter; (8) spectrometer; (9) CCD camera; (10) computer. (b) Schematic view of the SERDS system for in vivo measurements. (1) laser; (2) optical probe laser-guide ; (3) optical probe excitation; (4) sample environment; (5) optical probe collecting; (6) spectrometer; (7) CCD camera; (8) computer.
Fig. 2
Fig. 2 (Color online) Raman spectrum of a human tooth with 300 (a); 600 (b); and 1200 (c) gr/mm gratings in function of outputs power 15, 45, 80 and 110 mW.
Fig. 3
Fig. 3 (Color online) δ S for a human tooth obtained with 300 (Panel I); 600 (Panel II); and 1200 (Panel III) gr/mm gratings. Different output powers (15 (a); 45(b); 80(c); and 110 (d) mW) and wavelength displacements ( Δ λ = 0.5; 1.5; 2.5; and 3.5 nm) from the principal laser line were tested.
Fig. 4
Fig. 4 (Color online) The inverse of the optical response ( M 1 ) normalized to 0-1 for 300 (a); 600 (b); and 1200 (c) gr/mm gratings.
Fig. 5
Fig. 5 (Color online) SERDS spectrum of human tooth for the 300 (a); 600 (b); and 1200 (c) gr/mm gratings and Δ λ = 0.5; 1.5; 2.5 and 3.5 nm.
Fig. 6
Fig. 6 (Color online) (a) Two spectra obtained for a human tooth at λ1 = 830.0 nm and λ2 = 830.5 nm. (b) Subtracted spectrum ( δ S ). (c) SERDS spectrum compared to the FT-Raman one.
Fig. 7
Fig. 7 (Color online) (a) Two human skin spectra obtained at λ1 = 785.0 nm and λ2 = 785.5 nm. (b) Subtracted spectrum. (c) FT-Raman (solid line), SERDS (dashed line) and corrected-SERDS (dotted line) spectra. (d) SERDS subtracted FT-Raman spectra. The dashed line is a fitting to Eq. (6) as discussed in text.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S R ( λ ) = [ L ( λ ) + R ( λ ) ] M ( λ ) + B ( λ ) ,
S R ( λ 1 ) = [ L ( λ ) + R ( λ 1 ) ] M ( λ ) + B ( λ ) ,
S R ( λ 2 ) = [ L ( λ ) + R ( λ 2 ) ] M ( λ ) + B ( λ ) ,
δ S = [ R ( λ 2 ) R ( λ 1 ) ] M ( λ ) δ R ( λ ) M ( λ )
R ( λ ) = M 1 δ S d λ
E ( λ ) = I max 1 + ( 2 Q π ) 2 sin 2 ( 2 π d λ )
S R ( λ ) = [ L ( λ ) + R ( λ ) ] M ( λ ) E ( λ ) + B ( λ ) .
M 1 d S R = R ( λ ) d E d λ d λ + E ( λ ) d R d λ d λ
M 1 d S R = E ( λ ) d R d λ d λ
R ( λ ) = 1 E M 1 δ S d λ

Metrics