Abstract

We propose parallel phase-shifting digital holographic microscopy (PPSDHM) which has the ability of three-dimensional (3-D) motion measurement using space-division multiplexing technique. By the PPSDHM, instantaneous information of both the 3-D structure and the phase distributions of specimens can be simultaneously acquired with a single-shot exposure. We constructed a parallel phase-shifting digital holographic microscope consisting of an optical interferometer and an image sensor on which micro polarizers are attached pixel by pixel. The validity of the PPSDHM was experimentally verified by demonstrating the single-shot 3-D imaging and phase-imaging ability of the constructed microscope.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
    [CrossRef]
  2. Three-Dimensional Television, Video, and Display Technologies, ed. B. Javidi and F. Okano (Springer, 2002).
  3. Digital holography and three-dimensional display: Principles and Applications, ed. T. -C. Poon, (Springer, 2006).
  4. Digital Holography, ed., U. Schnars and W. Jueptner (Springer, 2005).
  5. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
    [CrossRef]
  6. S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
    [CrossRef]
  7. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
    [CrossRef] [PubMed]
  8. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4492 .
    [CrossRef] [PubMed]
  9. B. Javidi, S. Yeom, I. Moon, and M. Daneshpanah, “Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events,” Opt. Express 14(9), 3806–3829 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3806 .
    [CrossRef] [PubMed]
  10. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48(34), H113–H119 (2009).
    [CrossRef] [PubMed]
  11. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [CrossRef] [PubMed]
  12. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
    [CrossRef] [PubMed]
  13. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  14. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [CrossRef] [PubMed]
  15. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004) pp. 187–188.
  16. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004) pp. 357–358.
  17. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
    [CrossRef]
  18. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
  19. S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45(5), 451–456 (2005).
    [CrossRef]
  20. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
    [CrossRef] [PubMed]
  21. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
    [CrossRef] [PubMed]
  22. S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography or three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48(9), 09LB01 (2009).
    [CrossRef]
  23. L. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express 17(15), 12900–12909 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-15-12900 .
    [CrossRef] [PubMed]
  24. T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48(34), H244–H250 (2009).
    [CrossRef] [PubMed]
  25. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18(9), 9555–9560 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-9-9555 .
    [CrossRef] [PubMed]
  26. T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography using polarization,” Opt. Rev. 17(3), 108–113 (2010).
    [CrossRef]
  27. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
    [CrossRef]
  28. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
    [CrossRef] [PubMed]
  29. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
    [CrossRef] [PubMed]

2010

T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18(9), 9555–9560 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-9-9555 .
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography using polarization,” Opt. Rev. 17(3), 108–113 (2010).
[CrossRef]

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

2009

2008

2007

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

2006

2005

2004

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

1999

1998

1997

1995

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Andrés, P.

Araiza-E, M.

Araki, T.

Awatsuji, Y.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Brock, N.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Cai, L. Z.

Carapezza, E.

Climent, V.

Cuche, E.

Daneshpanah, M.

Depeursinge, C.

Doh, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Dong, G. Y.

Dubois, F.

Garcia-Sucerquia, J.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Harada, D.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography or three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48(9), 09LB01 (2009).
[CrossRef]

Hayes, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Indebetouw, G.

Ito, K.

Javidi, B.

Jericho, M. H.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Jericho, S S. K.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Joannes, L.

Kakue, T.

Kaneko, A.

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography using polarization,” Opt. Rev. 17(3), 108–113 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Katz, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Kawakami, S.

Kikuta, H.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45(5), 451–456 (2005).
[CrossRef]

Koyama, T.

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography using polarization,” Opt. Rev. 17(3), 108–113 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Kreuzer, H. J.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Kubota, T.

Lam, E. Y.

Lancis, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Legros, J. C.

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Marquet, P.

Martínez-León, L.

Matoba, O.

Meng, X. F.

Millerd, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Moon, I.

Moritani, Y.

Moriwaki, K.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45(5), 451–456 (2005).
[CrossRef]

Murata, S.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography or three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48(9), 09LB01 (2009).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
[CrossRef] [PubMed]

Nishio, K.

Nitanai, E.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
[CrossRef] [PubMed]

Nomura, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
[CrossRef] [PubMed]

North-Morris, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Novak, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Numata, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
[CrossRef] [PubMed]

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Poon, T.-C.

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48(34), H113–H119 (2009).
[CrossRef] [PubMed]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Sasaki, Y.

Sato, T.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Shen, X. X.

Sheng, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Shimozato, Y.

Shinoda, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Suzuki, H.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

Suzuki, Y.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Tadokoro, T.

Tahara, T.

Tajahuerce, E.

Tanaka, Y.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography or three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48(9), 09LB01 (2009).
[CrossRef]

Tsuru, T.

Ura, S.

Vo, H.

Wang, Y. R.

Wu, M.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Wyant, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Xu, W.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yeom, S.

Yoneyama, S.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45(5), 451–456 (2005).
[CrossRef]

Zhang, T.

Zhang, X.

Appl. Opt.

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48(34), H113–H119 (2009).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38(34), 7085–7094 (1999).
[CrossRef] [PubMed]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45(20), 4873–4877 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47(19), D183–D189 (2008).
[CrossRef] [PubMed]

T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48(34), H244–H250 (2009).
[CrossRef] [PubMed]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46(22), 4963–4967 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11(3), 77–79 (1967).
[CrossRef]

Exp. Mech.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array,” Exp. Mech. 45(5), 451–456 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography or three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys. 48(9), 09LB01 (2009).
[CrossRef]

Opt. Eng.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34(5), 1338–1344 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography using polarization,” Opt. Rev. 17(3), 108–113 (2010).
[CrossRef]

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic Recording of a Digital Hologram with Single Exposure by a Wave-Splitting Phase-Shifting Method,” Opt. Rev. 17(3), 176–180 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[CrossRef] [PubMed]

Proc. SPIE

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).

Rev. Sci. Instrum.

S S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77(4), 043706 (2006).
[CrossRef]

Other

Three-Dimensional Television, Video, and Display Technologies, ed. B. Javidi and F. Okano (Springer, 2002).

Digital holography and three-dimensional display: Principles and Applications, ed. T. -C. Poon, (Springer, 2006).

Digital Holography, ed., U. Schnars and W. Jueptner (Springer, 2005).

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004) pp. 187–188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004) pp. 357–358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the PPSDHM. (a) An example of the optical implementation, (b) schematic of the image sensor with the micro-polarizer array (c) the configuration of the micro-polarizer array.

Fig. 2
Fig. 2

Processing procedure of the image reconstruction of parallel two-step phase-shifting digital holography.

Fig. 3
Fig. 3

Microscope photograph of the specimen.

Fig. 4
Fig. 4

Reconstructed image by each DHM. (a) Amplitude image, (b) phase image reconstructed by PPSDHM. (c) Amplitude image, (d) phase image reconstructed by the conventional single-shot in-line DHM that applies Fresnel transform alone.

Fig. 5
Fig. 5

Reconstructed images by the PPSDHM. Images numerically focused at (a) 19mm, and (b) 22mm from the image sensor plane, respectively.

Fig. 6
Fig. 6

Magnified images numerically focused at different depths. (a) and (b) are the upper and right bottom parts of the image focused at 17 mm, (c) and (d) are the upper and right bottom parts of the image focused at 19 mm, (e) and (f) are the upper and right bottom parts of the image focused at 22 mm from the image sensor plane, respectively. Insides of the circled ellipsoid areas indicate in-focus areas.

Metrics