Abstract

Cerebral blood flow (CBF) during stepped hypercapnia was measured simultaneously in the rat brain using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeling MRI (ASL). DCS and ASL CBF values agree very well, with high correlation (R=0.86, p< 10-9), even when physiological instability perturbed the vascular response. A partial volume effect was evident in the smaller magnitude of the optical CBF response compared to the MRI values (averaged over the cortical area), primarily due to the inclusion of white matter in the optically sampled volume. The 8.2 and 11.7 mm mid-separation channels of the multi-distance optical probe had the lowest partial volume impact, reflecting ~75 % of the MR signal change. Using a multiplicative correction factor, the ASL CBF could be predicted with no more than 10% relative error, affording an opportunity for real-time relative cerebral metabolism monitoring in conjunction with MR measurement of cerebral blood volume using super paramagnetic contrast agents.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).
  2. N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).
  3. I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).
  4. I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).
  5. M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).
  6. M. F. Beal, “Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?” Ann. Neurol. 31, 119–130 (1992).
  7. A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).
  8. G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).
  9. K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).
  10. A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).
  11. V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).
  12. V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).
  13. J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).
  14. T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).
  15. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
  16. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).
  17. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
  18. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).
  19. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).
  20. J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).
  21. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).
  22. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).
  23. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).
  24. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).
  25. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).
  26. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).
  27. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).
  28. S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
  29. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).
  30. G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).
  31. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).
  32. T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).
  33. M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).
  34. M. Reivich, “Arterial pco2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).
  35. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
  36. D. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media : theory and biomedical applications,” Ph.D. thesis, Univ. of Pennsylvania (1996).
  37. C. Zhou, “In vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, Univ. of Pennsylvania (2007).
  38. J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).
  39. J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).
  40. M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).
  41. M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).
  42. S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).
  43. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).
  44. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).
  45. R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).
  46. Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

2010 (4)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

2009 (4)

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

2008 (1)

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

2007 (6)

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

2005 (1)

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

2004 (2)

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

2003 (4)

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

2002 (1)

2001 (3)

I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

2000 (2)

I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

1999 (1)

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

1998 (2)

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).

1997 (2)

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).

1996 (1)

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

1995 (2)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

1994 (1)

M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).

1992 (2)

M. F. Beal, “Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?” Ann. Neurol. 31, 119–130 (1992).

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

1989 (1)

T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).

1984 (1)

M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).

1974 (1)

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

1967 (1)

A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).

1964 (1)

M. Reivich, “Arterial pco2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).

Alexandrov, A. V.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Antuono, P.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Arger, P. H.

Arvin, K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Babikian, V. L.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

Barbieri, B. B.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Beal, M. F.

M. F. Beal, “Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?” Ann. Neurol. 31, 119–130 (1992).

Bernards, C. M.

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

Berwick, J.

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Billings, S.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

Blumenfeld, H.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Boas, D. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).

Bogdahn, U.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Borgers, M.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Bortfeld, H.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Brown, G. G.

T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).

Buckley, E. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

Bundgaard, M.

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

Burnett, M. G.

Buxton, R. B.

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).

Caplan, L. R.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Carp, S. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

Cheung, C.

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

Choi, H. B.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Coman, D.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Cook, N. M.

Culver, J. P.

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

Dai, G.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

De Visscher, G.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Detre, J. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

Diamond, S. G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Dietsche, G.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Dunn, A. K.

Durduran, T.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

Durning, S. M.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Edlow, B. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Egan, R.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Egi, Y.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Eichling, J. O.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

Elbert, T.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Ellis-Davies, G. C.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Eucker, S. A.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

Fabricius, M.

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).

Fantini, S.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Feldmann, E.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Flameng, W.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Floyd, T. F.

Franceschini, M. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).

Franceschini, M.-A.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Frangos, S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Frank, L. R.

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).

Friess, S. H.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

Furuya, D.

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

Furuya, T.

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

Gaynor, J. W.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Gisler, T.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Glenny, R. W.

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

Gomez, C. R.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Gordon, G. R.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Grant, P. E.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Gratton, E.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Greenberg, J. H.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

Grubb, R. L.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

Haseldonckx, M.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Heiss, W. D.

M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).

Herman, P.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Hevner, R.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Heymann, M. A.

A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).

Ho, K. C.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Huang, S.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Huang, Z.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Humeau, A.

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

Hurt, H. H.

Hyder, F.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Ichord, R. N.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

Iftime, D.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Johnston, D.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Jones, J.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Jones, M.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Kim, M. N.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

Kim, Y. R.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Kong, Y.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

Koretsky, A. P.

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

Krishnamoorthy, K. K.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Kwon, S. J.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Lauritzen, M.

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).

Leigh, J. S.

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

Levine, J. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Li, J.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Licht, D. J.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

Liebl, W.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Liu, T. T.

T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).

Lo, E. H.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Lu, J.

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

Maandag, N. J.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

MacVicar, B. A.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Maier, J. S.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Maret, G.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Margulies, S. S.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

Martindale, J.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Mason, S. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Maurer, I.

I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).

I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).

Mayhew, J.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Moller, H. J.

I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).

I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).

Montenegro, L. M.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Newell, D. W.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Nicolson, S. C.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Nilsson, H.

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

Pawlik, G.

M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).

Paxinos, G.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).

Perthen, J. E.

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

Powers, K. M.

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

Putt, M. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

Rachel, R.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Raichle, M. E.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

Rajan, V.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

Ralston, J.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

Reich, T.

T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).

Reivich, M.

M. Reivich, “Arterial pco2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).

Reneman, R. S.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Ringelstein, E. B.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Roche-Labarbe, N.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

Rockstroh, B.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Rubin, I.

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

Rudolph, A. M.

A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).

Rungta, R. L.

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Rusinek, H.

T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).

Sanganahalli, B. G.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Sato, M.

M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).

Schimmel, C.

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

Schultz, S.

Sehgal, C. M.

Shulman, R. G.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Skipetrov, S. E.

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

Smith, A. J.

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Spencer, M. P.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Spray, T. L.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Steenbergen, W.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

Stott, J. J.

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).

Stromberg, T.

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

Tegeler, C.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Ter-Pogossian, M. M.

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

Thaker, S.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Themelis, G.

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

van Leeuwen, T. G.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

van Rossem, K.

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

Varghese, B.

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

Walker, S. A.

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Wang, J.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

Watson, C.

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).

Wechsler, L. R.

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

Wegener, S.

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

Williams, D. S.

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Wong, E. C.

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).

Wong-Riley, M.

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Wu, W. C.

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

Yodh, A. G.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997).

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).

Yu, G.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

Zheng, Y.

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial doppler ultrasound,” Opt. Express 17, 12571–12581 (2009).

G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion mri,” Opt. Express 15, 1064–1075 (2007).

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29, 1766–1768 (2004).

Zierz, S.

I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).

I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).

Zimmerman, R. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

Adv. Exp. Med. Biol. (1)

J. P. Culver, T. Durduran, C. Cheung, D. Furuya, J. H. Greenberg, and A. G. Yodh, “Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest,” Adv. Exp. Med. Biol. 510, 293–297 (2003).

Am. J. Physiol. (3)

M. Fabricius and M. Lauritzen, “Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 266, 1457–2464 (1994).

M. Fabricius, I. Rubin, M. Bundgaard, and M. Lauritzen, “Nos activity in brain and endothelium: relation to hypercapnic rise of cerebral blood flow in rats,” Am. J. Physiol. 271, 2035–2044 (1996).

M. Reivich, “Arterial pco2 and cerebral hemodynamics,” Am. J. Physiol. 206, 25–35 (1964).

Ann. Neurol. (1)

M. F. Beal, “Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses?” Ann. Neurol. 31, 119–130 (1992).

Circ. Res. (1)

A. M. Rudolph and M. A. Heymann, “The circulation of the fetus in utero. methods for studying distribution of blood flow, cardiac output and organ blood flow,” Circ. Res. 21, 163–184 (1967).

Hum. Brain Mapp. (1)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31, 341–352 (2010).

J. Magn. Reson. Imaging (1)

S. Wegener, W. C. Wu, J. E. Perthen, and E. C. Wong, “Quantification of rodent cerebral blood flow (CBF) in normal and high flow states using pulsed arterial spin labeling magnetic resonance imaging,” J. Magn. Reson. Imaging 26, 855–862 (2007).

J. Neuroimaging (1)

V. L. Babikian, E. Feldmann, L. R. Wechsler, D. W. Newell, C. R. Gomez, U. Bogdahn, L. R. Caplan, M. P. Spencer, C. Tegeler, E. B. Ringelstein, and A. V. Alexandrov, “Transcranial doppler ultrasonography: year 2000 update,” J. Neuroimaging 10, 101–115 (2000).

J. Biomed. Opt. (3)

J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10, 44002 (2005).

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010).

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009).

J. Cereb. Blood Flow Metab. (2)

J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones, S. Billings, and J. Mayhew, “A model of the dynamic relationship between blood flow and volume changes during brain activation,” J. Cereb. Blood Flow Metab. 24, 1382–1392 (2004).

J. Int. Neuropsychol. Soc. (1)

T. T. Liu and G. G. Brown, “Measurement of cerebral perfusion with arterial spin labeling: Part 1. methods,” J. Int. Neuropsychol. Soc. 13, 517–525 (2007).

J. Neurosci. Methods. (1)

G. De Visscher, M. Haseldonckx, W. Flameng, M. Borgers, R. S. Reneman, and K. van Rossem, “Development of a novel fluorescent microsphere technique to combine serial cerebral blood flow measurements with histology in the rat,” J. Neurosci. Methods. 122, 149–156 (2003).

J. Neurosci. Methods. (1)

K. M. Powers, C. Schimmel, R. W. Glenny, and C. M. Bernards, “Cerebral blood flow determinations using fluorescent microspheres: variations on the sedimentation method validated,” J. Neurosci. Methods. 87, 159–165 (1999).

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (1)

V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, “Review of methodological developments in laser doppler flowmetry,” Lasers Med. Sci. 24, 269–283 (2009).

Magn. Reson. Med. (2)

J. A. Detre, J. S. Leigh, D. S. Williams, and A. P. Koretsky, “Perfusion imaging,” Magn. Reson. Med. 23, 37–45 (1992).

R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39, 855–864 (1998).

Med. Biol. Eng. Comput. (1)

A. Humeau, W. Steenbergen, H. Nilsson, and T. Stromberg, “Laser doppler perfusion monitoring and imaging: novel approaches,” Med. Biol. Eng. Comput. 45, 421–435 (2007).

Nature (1)

G. R. Gordon, H. B. Choi, R. L. Rungta, G. C. Ellis-Davies, and B. A. MacVicar, “Brain metabolism dictates the polarity of astrocyte control over arterioles,” Nature 456, 745–749 (2008).

Neurobiol. Aging (1)

I. Maurer, S. Zierz, and H. J. Moller, “A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients,” Neurobiol. Aging 21, 455–462 (2000).

Neurocrit. Care (1)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12, 173–180 (2010).

Neuroimage (3)

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18, 865–879 (2003).

J. Lu, G. Dai, Y. Egi, S. Huang, S. J. Kwon, E. H. Lo, and Y. R. Kim, “Characterization of cerebrovascular responses to hyperoxia and hypercapnia using mri in rat,” Neuroimage 45, 1126–1134 (2009).

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13, 975–987 (2001).

Opt. Eng. (1)

S. Fantini, M.-A. Franceschini, J. S. Maier, S. A. Walker, B. B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).

Opt. Express (3)

Opt. Lett. (1)

Pediatr. Res. (1)

M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61, 546–551 (2007).

Phys. Med. Biol. (1)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001).

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).

Proc. Natl. Acad. Sci. U.S.A. (1)

N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman, and F. Hyder, “Energetics of neuronal signaling and fMRI activity,” Proc. Natl. Acad. Sci. U.S.A. 104, 20546–20551 (2007).

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

Schizophr. Res. (1)

I. Maurer, S. Zierz, and H. J. Moller, “Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia,” Schizophr. Res. 48, 125–136 (2001).

Stroke (3)

T. Reich and H. Rusinek, “Cerebral cortical and white matter reactivity to carbon dioxide,” Stroke 20, 453–457 (1989).

M. Sato, G. Pawlik, and W. D. Heiss, “Comparative studies of regional cns blood flow autoregulation and responses to co2 in the cat. effects of altering arterial blood pressure and paco2 on rcbf of cerebrum, cerebellum, and spinal cord,” Stroke 15, 91–97 (1984).

R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5, 630–639 (1974).

Vision Res. (1)

M. Wong-Riley, P. Antuono, K. C. Ho, R. Egan, R. Hevner, W. Liebl, Z. Huang, R. Rachel, and J. Jones, “Cytochrome oxidase in alzheimer’s disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems,” Vision Res. 37, 3593–3608 (1997).

Other (3)

G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates (Academic Press, San Diego, 1998).

D. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media : theory and biomedical applications,” Ph.D. thesis, Univ. of Pennsylvania (1996).

C. Zhou, “In vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, Univ. of Pennsylvania (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Multi-modality probe design. a) Photograph of MRI head coil and optical probe assembly on a rat, ready to be inserted into the scanner bore; a separate ASL labeling coil is placed under the neck area. b) Schematic of optical probe, with fibers connected to both the FD-NIRS and the DCS system inserted at each location. Source position is shown in red, while detector positions are in blue, with source-detector separations of 5.3, 8.2, 11.7, and 15.5 mm, respectively

Fig. 2.
Fig. 2.

ASL slice showing optical fiber locations (blue) and region-of-interest for averaging of MRI CBF (magenta)

Fig. 3.
Fig. 3.

Average normalized CBF time course for N=4 hypercapnia periods, from both ASL (black) and the 4 optical channels with 5.3 (blue), 8.2 (red), 11.7 (green) and 15.5 (magenta) mm separations, respectively; vertical bars indicate gas changes from 0→2.5 % CO2,2.5→5% CO2, 5→7.5% CO2 and 7.5→0% CO2

Fig. 4.
Fig. 4.

DCS-ASL correlation scatter plot.

Fig. 5.
Fig. 5.

CBF measurement during physiological instability. a) CBF time course from DCS (blue) and ASL (red) data; b) ASL vs DCS correlation plot

Tables (3)

Tables Icon

Table 1. Average relative CBF during stepped hypercapnia. Averages taken over the second half of each hypercania period. Baseline value for MRI-ASL is italicized to indicate lower confidence because of the lower SNR of the corresponding raw data.

Tables Icon

Table 2. Percent of MRI relative CBF change reflected by the DCS relative CBF change. Values less than 100% denote rCBFDCS underestimates rCBFASL

Tables Icon

Table 3. Error in predicting rCBF (normalized to CBF during the second half of the 2.5% CO2 period)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( r s , r d , τ ) = 1 + β [ exp ( ( 3 μ s μ a + P RBC μ s 2 k 0 2 < Δ r 2 ( τ ) > ) 1 / 2 r s r d ) ] 2
< Δ r 2 ( τ ) > = 6 D b τ

Metrics