Abstract

Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
    [CrossRef] [PubMed]
  2. A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
    [PubMed]
  3. B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  6. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  7. A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
    [CrossRef] [PubMed]
  8. I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
    [CrossRef] [PubMed]
  9. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  10. V. X. D. Yang, M. Gordon, S. J. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11(19), 2416–2424 (2003).
    [CrossRef] [PubMed]
  11. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  12. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  13. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  14. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  15. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [CrossRef] [PubMed]
  16. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
    [CrossRef]
  17. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
    [CrossRef] [PubMed]
  18. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
    [CrossRef] [PubMed]
  19. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
    [CrossRef] [PubMed]
  20. Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47(12), 2004–2010 (2008).
    [CrossRef] [PubMed]
  21. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
    [CrossRef] [PubMed]
  22. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1–3 (2010).
    [CrossRef] [PubMed]
  23. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004).
    [CrossRef] [PubMed]
  24. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45(8), 1861–1865 (2006).
    [CrossRef] [PubMed]
  25. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
    [CrossRef]
  26. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).
    [CrossRef] [PubMed]
  27. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
    [CrossRef] [PubMed]
  28. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
    [CrossRef] [PubMed]
  29. S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1 m spectral-domain optical coherence tomography,” Proc. SPIE, 716808 (2009).
  30. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt. Express 18(2), 1358–1372 (2010).
    [CrossRef] [PubMed]
  31. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  32. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
    [CrossRef] [PubMed]
  33. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [CrossRef] [PubMed]
  34. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [CrossRef] [PubMed]
  35. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  36. P. Meemon, K. S. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008).
    [CrossRef] [PubMed]
  37. K. S. Lee, A. C. Akcay, T. Delemos, E. Clarkson, and J. P. Rolland, “Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer,” Appl. Opt. 44(19), 4009–4022 (2005).
    [CrossRef] [PubMed]
  38. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  39. J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17(22), 19698–19713 (2009).
    [CrossRef] [PubMed]
  40. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  41. R. Nave, “Effective Fluid Speed in a Tube,” (Department of Physics and Astronomy, Georgia State University, 2010), retrieved Febuary 10, 2010, http://hyperphysics.phy-astr.gsu.edu/Hbase/pfric.html#veff .
  42. A. Leon-Garcia, Probability, statistics, and random processes for electrical engineering (Prentice Hall, 2007).
  43. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2002), p. 793.

2010 (3)

2009 (5)

2008 (7)

Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47(12), 2004–2010 (2008).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

P. Meemon, K. S. Lee, S. Murali, and J. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008).
[CrossRef] [PubMed]

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, “In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development,” J. Opt. Soc. Am. A 25(12), 3134–3143 (2008).
[CrossRef] [PubMed]

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (2)

2005 (4)

2004 (2)

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (2)

2000 (2)

1998 (1)

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1982 (1)

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

Akcay, A. C.

An, L.

Aoki, G.

Bajraszewski, T.

Baumann, B.

Bisland, S.

Bouma, B.

Bouma, B. E.

Cable, A.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Cense, B.

Chang, S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, Y.

Chen, Z.

Choma, M. A.

Clarkson, E.

Davis, A. M.

de Boer, J.

de Boer, J. F.

Delemos, T.

Dickinson, M. E.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Drexler, W.

Endo, T.

Fawzi, A.

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Flueraru, C.

Fujimoto, J.

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gardiner, G.

Ghosn, M.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Gil-Flamer, J.

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Gordon, M.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Hsu, K.

Hu, S.

Huang, D.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Itoh, M.

Izatt, J. A.

Jaillon, F.

Jiang, J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Jung, W.

Koch, E.

Kolbitsch, C.

Kowalczyk, A.

Larin, K. V.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Larina, I. V.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Lasser, T.

Lee, K. S.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lo, S.

Makita, S.

Mao, Y.

Marcon, N.

Maslov, K.

Meemon, P.

Michaely, R.

Mujat, M.

Murali, S.

Nassif, N.

Nelson, J.

Nelson, J. S.

Park, B.

Park, B. H.

Pekar, J.

Pierce, M.

Pierce, M. C.

Pircher, M.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Rao, B.

Roguin, A.

A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
[PubMed]

Rolland, J.

Rolland, J. P.

Rothenberg, F. G.

Saxer, C.

Schmetterer, L.

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Seng-Yue, E.

Shen, Q.

Shepherd, N.

Sherif, S.

Sigel, B.

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sudheendran, N.

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Taira, K.

Tan, O.

Tang, S. J.

Targowski, P.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Tearney, G.

Tearney, G. J.

Thompson, K. P.

Vakoc, B. J.

Vitkin, I. A.

Walther, J.

Wang, L. V.

Wang, R. K.

Wang, Y.

White, B.

White, D. N.

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

Wilson, B. C.

Wojtkowski, M.

Xiang, S.

Yabusaki, M.

Yang, C.

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zawadzki, R.

Zhang, J.

Zhao, Y.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[CrossRef]

Br. J. Radiol. (1)

A. Roguin, “Christian Johann Doppler: the man behind the effect,” Br. J. Radiol. 75(895), 615–619 (2002).
[PubMed]

J. Biomed. Opt. (1)

I. V. Larina, N. Sudheendran, M. Ghosn, J. Jiang, A. Cable, K. V. Larin, and M. E. Dickinson, “Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography,” J. Biomed. Opt. 13(6), 060506 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004).
[CrossRef]

Opt. Express (16)

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(16), 14281–14297 (2009).
[CrossRef] [PubMed]

J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17(22), 19698–19713 (2009).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
[CrossRef] [PubMed]

V. X. D. Yang, M. Gordon, S. J. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11(19), 2416–2424 (2003).
[CrossRef] [PubMed]

F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt. Express 18(2), 1358–1372 (2010).
[CrossRef] [PubMed]

J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express 18(4), 3632–3642 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Opt. Lett. (11)

S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
[CrossRef] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35(1), 1–3 (2010).
[CrossRef] [PubMed]

K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

D. N. White, “Johann Christian Doppler and his effect--a brief history,” Ultrasound Med. Biol. 8(6), 583–591 (1982).
[CrossRef] [PubMed]

B. Sigel, “A brief history of Doppler ultrasound in the diagnosis of peripheral vascular disease,” Ultrasound Med. Biol. 24(2), 169–176 (1998).
[CrossRef] [PubMed]

Other (4)

S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1 m spectral-domain optical coherence tomography,” Proc. SPIE, 716808 (2009).

R. Nave, “Effective Fluid Speed in a Tube,” (Department of Physics and Astronomy, Georgia State University, 2010), retrieved Febuary 10, 2010, http://hyperphysics.phy-astr.gsu.edu/Hbase/pfric.html#veff .

A. Leon-Garcia, Probability, statistics, and random processes for electrical engineering (Prentice Hall, 2007).

R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Prentice Hall, New Jersey, 2002), p. 793.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Experimental setup of the fiber-based DD-FD-OCT. FC: fiber coupler, PC: polarization controller, BS: beam splitter, COL: collimator, M: mirror, GM: galvo mirror, MZI: Mach-Zehnder interferometer, OBJ: Objective lens, CIR: circulator, FOC: focuser, and BD: balanced detector. (b) An en face image acquired over about 4 mm x 4 mm field of view of a calibrated resolution target, where the number of line-pairs per millimeter (lp/mm) and the corresponding lateral resolution in parenthesis of several groups of the target are provided in the red boxes.

Fig. 2
Fig. 2

(Color online) (a) Two typical spectra with quadratic phase relation simultaneously acquired by the dual detection system when imaging a single reflector; (b) A depth profile demonstrates the suppression performance of the DD-FD-OCT that corresponds to a case of matching amplitudes (unlike that shown in (a)) of the signals shown in (a) within 2%.

Fig. 3
Fig. 3

Illustration of the flow phantom and pumping system.

Fig. 4
Fig. 4

(Color online) Histogram distributions of measured Doppler phase errors where left (a,c) and right (b,d) columns are corresponding with the measurement data taken with conventional FD-OCT and DD-FD-OCT, and top (a,b) and bottom (c,d) rows are corresponding with B-mode and M-mode operations, respectively; The measurements were conducted at different values of M. The filled square markers and the lines represent measurement values and its Gaussian fit, respectively.

Fig. 5
Fig. 5

(Color online) Average phase errors measured from stationary diluted milk when the sample surface was placed at different depth positions by changing the optical path length in the reference, where the white dash box indicates the area that the phase error was averaged over in each case, and the orange dash line denotes the zero-delay position.

Fig. 6
Fig. 6

(Color online) Measured SNR (in air) of the system as a function of depth.

Fig. 7
Fig. 7

(Color online) (a) and (d) are intensity images, (b) and (e) are B-mode Doppler images, and (c) and (f) are M-mode Doppler images measured by the conventional FD-OCT and the DD-FD-OCT, respectively, where yellow horizontal dash lines indicate the zero path delay position, a white vertical dash line indicates the lateral position where the M-mode Doppler was operated, and a white solid line at the bottom right of (d) denotes a scale bar that is applied for all images (a-f).

Fig. 8
Fig. 8

(Color online) M-mode Doppler images calculated from the full-range signal at various flow velocities set by the pump.

Fig. 9
Fig. 9

Plots between the measured velocity at the peak of the flow profile and the set flow velocity measured by the conventional FD-OCT (left) and the full-range DD-FD-OCT (right). 200 measurements were performed at each set flow velocity. Each data point corresponds to a mean value, and the size of the error bar at each measurement point represents the FWHM of the distribution of the measured Doppler phase shift estimated by 2.36σ assuming a Gaussian distribution.

Fig. 10
Fig. 10

(Color online) (a) and (b) are intensity images and (c) and (d) are corresponding Doppler images of the heart of an African frog tadpole processed with and without full-range enabled, respectively. A white arrow in (b) indicates location of the flow activity displayed in (d).

Tables (1)

Tables Icon

Table 1 The minimum detectable axial velocity at various M values, where the top (without parenthesis) and bottom (in parenthesis) values in each cell corresponded to B-mode and M-mode Doppler imaging, respectively

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V ( z ) = λ 0 Δ φ ( z ) 4 π T n cos θ      ,
V a , max ( z ) = λ 0 4 T n     .
Δ φ ( z ) = tan 1 [ m = 1 M 1 Im { I m * ( z ) I m + 1 ( z ) } m = 1 M 1 Re { I m * ( z ) I m + 1 ( z ) } ]    ,
V a , min = λ 0 Δ φ e r r 4 π T n    .

Metrics